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We present a novel representation of visual information, based on local symbolic de-

scriptors that we call visual primitives. These primitives: (1) combine different visual
modalities, (2) associate semantic to local scene information, and (3) reduce the band-

width while increasing the predictability of the information exchanged across the system.

This representation leads to the concept of Early Cognitive Vision, that we define as an
intermediate level between dense, signal based Early Vision and high level Cognitive

Vision. The framework’s potential is demonstrated in several applications, in particular

in the area of robotics and humanoid robotics, which are briefly outlined.
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1. Introduction

Visual perception aims at gathering information about an agent’s surrounding, al-

lowing the agent to plan, navigate, and interact with its environment. Three of the

difficulties faced by visual perception are the large amount of noise in images, the

endemic ambiguity of local information, and the weak semantic content carried by

pixels. The extraction of more meaningful local features such as edges, surfaces,

corners, and textures are processes subject to errors due to noise. Moreover, pixel

information is only remotely related to geometric and other semantic properties of

the scene.
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This article describes a visual scene representation based on a set of visual

descriptors, hereafter called visual primitives. These primitives describe edge struc-

tures by means of a number of properties that are relevant for edges only. As a

consequence, their extraction requires a prior step to distinguish edge structures

from junctions and texture. Besides giving such description, they have been used

to formalize different contexts in visual scenes—in particular, 6D motion and 3D

spatial context, as outlined in section 6. Meanwhile, this descriptor has been used in

a number of applications such as the learning of object representations1, pose esti-

mation2, motion estimation3, and vision based grasping4. In these applications, we

observed the importance of three properties the edge descriptor fulfills: explicitness,

orthogonality, and condensation:

Explicitness: The primitives express explicitly important structural proper-

ties of edges such as local orientation, phase, color, and motion; this information

is encoded in a multi-dimensional feature vector, where geometric and appearance

cues are separated (see discussion under ‘orthogonality’ below). The feature vector

adapts structural parameters according to the presence of line or step edges and its

position according to both local structure and neighboring descriptors. Stereopsis

can be used to reconstruct the 3D equivalent of image primitives, encoded as a

new feature vector that preserves the explicitness of its components. Using classical

stereopsis and projective relations5, it is possible to transfer the primitives from

a 2D image plane representation to the 3D space, and conversely ; this allows the

formalization of relations between primitives either in 2D or 3D, indifferently. In

contrast, most popular feature descriptors have feature vectors that cannot be trans-

ferred so easily to 3D—apart from the local position. Note that although previous

works reconstructed 3D curves6,7 and curved surfaces8,9, the present work addi-

tionally encodes appearance information (color and phase) in the reconstructed 3D

entity. This explicitness of the primitives’ encoding, the duality between 2D and 3D

primitives and the relations defined between them endows the primitives with their

rich semantic content. In this sense, when we mention ‘semantics’ in this article, we

refer to the fact that the feature’s properties can be directly related to meaningful

image (or scene) events (e.g., local 2D and 3D orientation).

Orthogonality: The explicitness property allows primitives to separate visual

information gathered from their support region by splitting geometric and appear-

ance information. Geometric information covers position and orientation; appear-

ance information covers phase and color—see also split of identity10. Geometric

information varies with viewpoint change, but in a manner that is fully described

by the knowledge of 3D motion. For example, in the simplified case of rigid objects

the knowledge of an object’s motion (that can be computed from correspondences

of primitives) allows for fully predicting the change in geometric information of the

primitives that describe this object. Appearance information, on the other hand, is

robust to viewpoint changes, although still affected by lighting and shadows. There-

fore, appearance information is mainly used for matching purposes, while geometric
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information is used to estimate the actual motion underlying the viewpoint change.

Condensation: Because of the aperture problem, edges cannot—unlike

points—be located uniquely: image contours form ridges in potential, every point

on which is a valid location for the edge descriptor. This could potentially lead to

a very large number of features, with a very high level of redundancy. In order to

obtain a sparse yet complete representation of image contours, we extract primitives

sparsely along contours, using a local competition mechanism to inhibit candidates

that are too close to each other. The radius of this inhibition is chosen to be com-

mensurate with the extent of the filtering operation used to extract the edge pixels,

therefore ensuring the completeness of the representation.

The proposed approach is designed to fulfill the three properties of explicitness,

orthogonality and condensation discussed above, leading to several differences to

previous works. First, contours are modeled in 3D from the early stages on, allowing

an intrinsic robustness to viewpoint changes. This is advantageous as most rigid

motions in space lead to contour deformation when projected in images. Considering

edges in both image and space domains allows to formulate assertions in the most

convenient domain. For example, perceptual grouping is better addressed in images,

whereas motion is better handled in space. A second difference is the handling of

additional appearance properties, besides geometric information. The property of

orthogonality ensures that all geometric information is encoded in position and

orientation, whereas appearance cues are invariant to geometric transforms such as

viewpoint changes.

A large amount of evidence suggests that the human visual system processes a

number of aspects of visual data in its first cortical stages11,12; these aspects, in the

following called visual modalitiesa, cover, e.g., local orientation14, color14, junction

structures15, stereopsis16 and optic flow14. In our representation, we bundle the

different modalities in one visual descriptor which can be interpreted as a functional

abstraction of a specific repetitive pattern at the first stage of cortical visual called

hyper-column11—this biological analogy is discussed in an article by Krueger et

al17.

Information about these different modalities can be extracted from images by

applying a variety of linear and non-linear local filtering operations18. In a stage

that we will call Early Vision19, computer vision has dealt to a large extent with

these modalities separately and in many computer vision systems, one or more

of the above-mentioned aspects are processed19,20,21. Aloimonos and Shulman22

argued that such modules should be integrated and stressed the importance of such

inter-module integration and feedback mechanisms for mutual disambiguation.

a We would like to stress that, in this work, the term ‘modality’ refers to different visual modalities
such as motion, orientation, color etc. We are aware that in the literature the term modality has

been used with two different meanings: it has been applied to distinguish between different visual
modalities13 as well as different sensory modalities. In this article, the term ‘multi-modal’ is meant
to indicate different visual modalities and not sensory modalities.
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In contrast to the local, pixel-wise information that suffers from a large amount

of noise and ambiguity, higher cognitive functions (such as reasoning and plan-

ning) require a sparse, symbolic, temporally integrated and robust representation

of knowledge; this stage is called Cognitive Vision23. Extracting such a representa-

tion directly from images or local filter responses is difficult, and is prone to failure

due to the ambiguity and noise that is endemic to early vision. It has been discussed

that such a representation can be obtained by a hierarchical structure, the layers

of which are representations of increasing abstraction24,22. Recent work has shown

that such a feature hierarchy can be learned directly from visual data25,26,27,28. In

this article we therefore bypass a long and data intensive learning stage by devising

the intermediate features directly from properties of the local signal. In a similar

line of thoughts, this paper presents a concrete realization of such an intermediate

layer of representation, fitting between the ambiguities of early vision and the de-

manding requirements of cognitive vision, which we call Early Cognitive Vision29.

This level of representation makes use of an early-symbolic representation to dis-

ambiguate visual information and provides a suitable substrate for cognitive vision

tasks as exemplified in section 6.

A large amount of evidence suggests that the human visual system processes a

number of aspects of visual data in its first cortical stages11,12; these aspects, in the

following called visual modalitiesb, cover, e.g., local orientation14, color14, junction

structures15, stereopsis16 and optic flow14. In our representation, we bundle the

different modalities in one visual descriptor which can be interpreted as a functional

abstraction of a specific repetitive pattern at the first stage of cortical visual called

hyper-column11—this biological analogy is discussed in an article by Krueger et

al17.

Information about these different modalities can be extracted from images by

applying a variety of linear and non-linear local filtering operations18. In a stage

that we will call Early Vision19, computer vision has dealt to a large extent with

these modalities separately and in many computer vision systems, one or more

of the above-mentioned aspects are processed19,20,21. Aloimonos and Shulman22

argued that such modules should be integrated and stressed the importance of such

inter-module integration and feedback mechanisms for mutual disambiguation.

In contrast to the local, pixel-wise information that suffers from a large amount

of noise and ambiguity, higher cognitive functions (such as reasoning and plan-

ning) require a sparse, symbolic, temporally integrated and robust representation

of knowledge; this stage is called Cognitive Vision23. Extracting such a representa-

tion directly from images or local filter responses is difficult, and is prone to failure

b We would like to stress that, in this work, the term ‘modality’ refers to different visual modalities
such as motion, orientation, color etc. We are aware that in the literature the term modality has
been used with two different meanings: it has been applied to distinguish between different visual

modalities13 as well as different sensory modalities. In this article, the term ‘multi-modal’ is meant
to indicate different visual modalities and not sensory modalities.
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due to the ambiguity and noise that is endemic to early vision. It has been dis-

cussed that such a representation can be obtained by a hierarchical structure, the

layers of which are representations of increasing abstraction24,22. In a similar line of

thoughts, this paper presents a concrete realization of such an intermediate layer of

representation, fitting between the ambiguities of early vision and the demanding

requirements of cognitive vision, which we call Early Cognitive Vision29. This level

of representation makes use of an early-symbolic representation to disambiguate

visual information and provides a suitable substrate for cognitive vision tasks as

exemplified in section 6.

Recent research has focused towards features that could be matched with bet-

ter reliability and exhibit more general invariance properties, culminating in affine

invariant descriptors—some examples of which are30,31,32,33. One needs to make

the distinction between the two mechanisms that when combined, form a feature

extraction process: First, an interest point detector is designed for finding a list of

locations in the image that satisfy certain properties. Because of the need for accu-

racy and reliability in matching, modern detectors generally define interest points

at locations that can be consistently extracted and matched. Common examples

are Harris corners34 and its affine version35. Second, a region descriptor is charged

with encoding local information in a vector, for comparison and retrieval. Several

reviews of interest point detectors and feature descriptors are available, notably

Schmid et al36 compared interest points detectors while Mikolajczyk & Schmid37

and Moreels & Perona38 compared region descriptors.

Although very successful for match-intensive tasks, such as the ones discussed

above, this paradigm on feature descriptors can be complemented in certain re-

spects, that prove to be important for the analysis of visual scenes. First, most

visual scenes are dominated by edges which, in addition to being a candidate for

finding correspondences, also express important structural properties which have

been utilized for a variety of visual tasks. Further, local features can also be seen as

initiators of the symbolic description of objects’ shape, useful for generating generic

pattern of interaction with objects (e.g., filling recipients, grasping planes, etc.);

edges appear to be especially well suited for such a description39. For example,

we can easily recognize objects and their potential use from line drawings40. In

addition, edges also provide important information for actions such as grasping41.

Finally, our visual descriptors are embedded in contextual relations that are used

to disambiguate the extracted information being subject to noise as well as to link

the visual information to actions (see section 6); these relations make use of the

explicit semantics expressed in the descriptors.

Fig. 1 gives an overview of the framework presented in this paper: At the bot-

tom of the figure, the system receives a stereo-pair of images obtained from a pre-

calibrated stereo rig. The left and right images are then processed independently in

the Early Vision layer (Fig. 1A): First, linear filtering operations are applied to the

images, then combined (Fig. 1A-i) to extract the visual modalities: magnitude, ori-

entation, phase, color, and optical flow. Each pixel represents the local flow at this
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Fig. 1. Overview of the primitive extraction scheme.

location by its color: the hue indicates the orientation of the flow vector and the in-

tensity, the magnitude of the flow (where black stands for zero flow). Then, the local

signal is classified using a measure called intrinsic dimension (see 2.2), computed

for each pixel in the image the confidence that it is an homogeneous surface (id0),

an edge (id1), or a junction (id2). This is shown in Fig. 1A-ii, where white repre-

sents stronger confidence. In the next layer of the framework (Fig. 1B), coined Early

Cognitive Vision in this paper, pixel-wise information provided by early vision is

combined in a sparse, condensed set of feature vectors called 2D-primitives—see sec-

tion 3 and Fig. 2a,b. These primitives are then matched across the two stereo-views

and correspondences allow for the reconstruction of 3D-primitives that extend the

primitive representation into 3D space—see section 4. This representation is then
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(a) An edge primitive (b) A line primitive (c) phase (d) ori./phase space

Fig. 2. Illustration of the symbolic representation of (a) an edge primitive and (b) a line primitive,
where 1) represents the orientation of the primitive, 2) the phase, 3) the color and 4) the optic

flow. (c) The phase continuum (Figure courtesy of M. Felsberg42). (d) The torus topology of the

orientation/phase space.

provided to higher level, Cognitive Vision processes (Fig. 1C).

An early version of the visual primitives was first introduced by Krüger & al17,

where 2D primitives were discussed as an analogy to cortical hypercolumns. This

article did not dwell on the actual computation of the primitives, however, and only

described a very early version of the primitives. Considerable work has since been

invested in realizing these primitives towards computer vision and robotics appli-

cations, involving a parameter analysis that allowed to derive all parameters from

the filters’ bandwidth, and towards an extension of the primitives’ semantic into 3D

space. This lead to profound changes in the design of the primitives descriptors and

the primitives extraction process. Therefore, the present article is the first detailed

description of the visual primitives and the practical and theoretical issues involved

in their computation.

In section 5, different relations between reconstructed 3D-primitives are dis-

cussed. Finally, section 6 presents applications of this framework to different vision

and robotic problems and discusses primitives in the wider scope of a full fledged

cognitive vision system.

2. Analysis of the Local Signal Structure

In a first stage, referred to as Early Vision, the image is processed using a collection

of local, both linear and non-linear filtering operations. It has been shown that

such local filtering operations can extract relevant structural information from the

image19,43. Different filtering operations provide information on distinct aspects of

the image structure, aspects that we will call visual modalities. In this work, we chose

local edge structure as it encodes most relevant image information39 and behaves

well under scale changes44 (section 2.1). Edge information can be locally described

by the signal’s magnitude, phase, and orientation, plus the local color information

and the optical flow. Section 2.1 describes the low level filtering operations we use;

section 2.2 describes how different kinds of local image structures are detected.
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(a) Spatial response (b) Frequency response

Fig. 3. A 1D slice of the difference of Poissons (DOP) bandpass filter impulse responses for the

three scales considered in this article—i.e., for s = 1, s = 2, and s = 3. Note that the filter is

isotropic.

2.1. Local edge structure: orientation and phase

The edge structure of an image is characterized by local contrast and can be effi-

ciently extracted using local filtering, as in45,46. There is a large amount of evidence

that the human visual system, in its early stages, processes visual stimuli in a sim-

ilar manner47. This work makes use of a local filtering operation called monogenic

signal10. This operation is a rotationally invariant quadrature filter composed of a

triplet of filters: a radial bandpass filter constructed from a difference of Poisson

(DOP), and its two Riesz transforms. The impulse response of the bandpass filter,

in spatial (Se in Eq. (1) and Fig. 3a) and frequency (Fe in Eq. (2) and Fig. 3b)

domains is given by:

Se(x, s) =
s

2π(|x|2 + s2)
3
2

− 2s

2π(|x|2 + 4s2)
3
2

(1)

Fe(u, s) = exp(−2π|u|s)− exp(−4π|u|s) . (2)

where x = (x1, x2)> is the position, u = (u1, u2)> is the frequency, and s is the

scale.

The split of identity (i.e., the separation of the signal into local amplitude, ori-

entation and phase) is obtained by switching to appropriate polar coordinates—we

refer to Felsberg and Sommer10 for a discussion. This filter provides a qualitatively

comparable response (for our purpose) as, e.g., Gabor wavelets, with fewer filtering

operations: the filter is rotationally invariant thus there is no need to sample over

all orientations. For a comparative study with other harmonic filtering alternatives,

we refer the interested reader to the review by Sabatini et al48.

The orientation θ encodes a local estimate of the edge orientation at this point.

Because there is no unambiguous way to orient edges at this stage, local orientation

is between θ ∈ [0, π). The phase ϕ encodes the local intensity transition across the

edge into a continuum between ϕ ∈ [−π,+π) in a compact way, using one parameter

only (see Fig. 2c)49. For example, a pixel positioned on a bright line over a dark

background has a phase of 0; a dark line on a bright background, a phase of π; a

dark/bright edge, a phase of π/2; and a bright/dark edge, a phase of −π/2. Note

that phase is 2π-periodic and continuous such that a phase of −π represents the
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same contrast transition as a phase of π. Also, the sign of the phase depends on the

orientation interpretation; therefore local phase and orientation form a continuous

space within [0, π) × [−π,+π), with a half-torus topology connected as illustrated

in Fig. 2d. We compute filter responses for three different scales (for s = 1, s = 2

and s = 4).c

2.2. Intrinsic dimension and symbolic interpretation

Different kinds of image structures coexist in natural images: homogeneous im-

age patches, edges, corners, and textures. Furthermore, certain concepts are only

meaningful for specific classes of image structures. For example, the concept of ori-

entation is well defined for edges or lines but not for junctions, homogeneous image

patches, or most textures. Therefore, before associating concepts such as orienta-

tion or position, we need to classify image patches according to their junction-ness,

edge-ness or homogeneous-ness. The intrinsic dimension50 is a suitable classifier in

this context. Ideal homogeneous image patches have an intrinsic dimension of zero

(id0), ideal edges are intrinsically one-dimensional (id1) while junctions and most

textures have an intrinsic dimension of two (id2). Going beyond common discrete

classification50, we use a continuous formulation51 that, based in a compact trian-

gular representation, provides three confidences that express the likelihood of an

image patch being either id0, id1, or id2. For a detailed discussion of the relation of

the concept of intrinsic dimension to other approaches, we refer to Felsberg et al51.

3. Semantic Representation of Local Information

The abstraction of the pixel-wise information (as described in section 2) into a

sparse set of primitives is done in three stages: First, in a sampling stage, interest

points in the image are extracted with sub-pixel accuracy according to the signal’s

magnitude (section 3.2). Second, in an elimination stage, interest points that are

too close to each other (and therefore would lead to redundant descriptors) compete

and the weaker one is disregarded (section 3.3). Finally, in the abstraction stage, the

image’s local structure at selected interest points become interpreted and multiple

visual modalities become associated (section 3.4). Before coming to the sampling

stage (section 3.2), we need to define the scaled dependent parameters that it uses

(section 3.1).

3.1. Scale dependent parameters

An important aspect of the condensation scheme is that all parameters are derived

from the monogenic signal’s filter equations. In particular, two quantities are of

importance for the sampling scheme: the line/edge bifurcation distance and the

c Note that step edges have high amplitudes across all scales, whilst line structures are represented
as a line at coarse scales, and as two step-edges at fine scales44—see also section 3.
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Fig. 4. (a) Illustration of the elimination scheme: (i) image; (ii) magnitude; interest points before
elimination (iii) and after first (iv) then second (v) elimination; (vi) primitives. (b) Extraction

of redundant primitives: (i) a double edge; (ii) a line primitive; (iii) redundant primitive. (c)
Illustration of the sampling process: (i) hexagonal sampling; (ii) ambiguous cell association; (iii)

redundant interest points.

filter extent. Both can be derived from the formulation of the DOP bandpass filter,

the impulse response of which is given by Eq. (1) in the spatial domain, and by

Eq. (2) in the frequency domain.

Three scales of processing are considered in this work, for s = 1, s = 2, and s = 4.

The filter at the three scales have a peak response in the frequency domain, or peak

frequency, that are computed using the root of the impulse response’s derivative, to

values of 0.110, 0.055, and 0.027, respectively—see Fig. 3(b).

Line/edge bifurcation distance (dleb): The first filter property that is of

relevance for sparse sampling is called line/edge bifurcation distance. It is defined

for a given scale as the minimal distance between two edges for them to produce

two distinct amplitude maxima in the filter response magnitude. Hence, a double

edge will be represented by a pair of edge primitives if its width is larger than

dleb, and by only one line primitive otherwise. Fig. 4a-i shows a narrow triangle for

which two edges get closer until they meet. Vertical sections of the local amplitude

(Fig. 4a-ii) close to the vertex have only one maximum that splits into two distinct

maxima further away from the vertex, where the distance between the two edges is

larger—see also Fig. 4b.

The bandpass filter’s total response for two edges separated by a distance a is
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Table 1. The scale-dependent parameters of our representation.

Scale s 1 2 4

Peak frequency fp 0.1103 0.0551 0.0275

Wavelength λ 9.06 18.12 36.25

Line/edge bifurcation dleb 2(0.96)∗ 2(1.92)∗ 3.83

Influence radius dk 2.02663 4.05327 8.10653

Hexagonal spacing in x dx 2(1)∗ 2 4

Hexagonal spacing in y dy 2(1)∗ 2 3

Compression ratio rco 62% / 1.2% 62% / 0.9% 20% / 0.3%

given by:

Te(x, a, s) = Se(x, s) + Se(x+ a, s), (3)

where s is the current scale. Each maximum of this function elicits a distinct can-

didate position. When the distance a is large, this function bears two distinct max-

ima, that become closer with diminishing distance a and finally become one when

a = dleb—see Fig. 4b. It follows that dleb is equal to the distance a, for which the

roots of the derivative ∂T (x,a,s)
∂x of equation (3) merge into a single one. This was

numerically computed for all three scales and dleb was found to grow linearly with

scale dleb = κs, where κ w 0.95825. Note that, because the magnitude is encoded in

a discrete array (an image), the minimum distance between two maxima is always

2 pixels (or even 2
√

2 along the diagonal). Therefore, dleb is set to 2 for scales s = 1

and s = 2.

Influence radius dk: The second quantity that is of relevance for sparse sam-

pling is the spatial extent of the filter’s impulse response. This value is estimated as

the distance x for which the bandpass filter’s spatial response S(x, s) reaches zero.

This value was computed for all three scales considered, and was found to also grow

linearly with scale dk = ηs, where η w 2.02663.

3.2. Sampling

The concept of position can vary depending on what kind of features we are try-

ing to locate. For example, in homogeneous areas there is no single location that

can be identified; on edges, the aperture problem prevents us from identifying a

specific location along the edge. Only corners, junctions, and other structures that

are intrinsically two dimensional can be located unambiguously in the image. The

present work focuses on locating edge features.

To get sparse candidates for our primitives, we first perform a hexagonal sam-

pling (see Fig. 4c-i) of the image into overlapping areas A(k,l) of radius rs, with

(k, l) coding the hexagonal grid points. Hexagonal sampling has a number of ad-

vantages52,53; one amongst them is that the distance between the centers of neighbor

tiles is uniform in an hexagonal grid while in a rectangular grid diagonal spacing

is
√

2 times longer than for horizontal or vertical spacing. Since we want to extract
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symbolic descriptors for each tile, hexagonal sampling allows for a more evenly dis-

tributed symbolic description and reflects more closely the isotropic structure of

the original image filters. The parameters dx and dy =
√
3
2 dx determine the spatial

distance in x and y between the center A
(k,l)
c of the tile A(k,l) and the centers of the

neighbor tiles.d The optimal sampling distance dx is set to be equal to the line/edge

bifurcation distance dleb for this scale, and therefore dx = dleb. All scale dependent

parameters are shown in Table 1. Note that, due to sampling, the line/edge bifurca-

tion distance has a minimum value of 2 pixels; in cases where the theoretical value

is lower, it is recorded in parentheses after the effective value, and denoted as (x)∗.

For each cell center A
(k,l)
c , a circular neighborhood of radius rs is searched for

interest points. The radius rs is chosen so that the image is fully covered by all

cells’ neighborhoods. In a hexagonal grid, the maximum distance to a tile’s border

is 1√
3
dx, hence we set rs = dx√

3
.

For a line or edge, the position x
(k,l)
id1 can be defined through energy maxima

that are organized as a one-dimensional manifold; therefore, an equidistant sampling

along these energy maxima is appropriate. For this, we look within the area A(k,l)

for the energy maximum along a line orthogonal to the orientation at A
(k,l)
c :

x
(k,l)
id1 = (x̂, ŷ) = arg max

(x,y)∈L(k,l)
m(x, y), (4)

where L(k,l) is a local line going through A
(k,l)
c with orientation perpendicular to

θ(A
(k,l)
c ). Then, candidate positions are computed with sub-pixel accuracy. Fig. 4a-

iii shows the interest points for the test image in Fig 4a-i.

3.3. Elimination of redundant descriptors

Since areas A(k,l) are overlapping, the process described above can lead to identical

positions found in neighboring areas: in Fig. 4c-ii, the putative positions x(2,1) and

x(3,1), elicited by two distinct hexagonal cells, represent the same image location.

Moreover, the filter’s spatial extension can lead to proximate positions describing

essentially the same image structure: in Fig. 4c-iii, the putative position x(3,1) is

redundant because it describes the same structure as x(2,1), and less accurately.

In order to eliminate these redundant descriptors, an additional selection process

is needed. This process faces the following challenges:

• Proximate, yet distinct, putative positions should be preserved as, for ex-

ample, in Fig. 4b-i where two edges converge.

• Distant, yet redundant, putative positions should be discarded. Due to the

kernel’s spatial extent, a given image structure will generate significant

response within a radius dk that is larger than dleb (as in Fig. 4b-iii).

d Note that the odd rows have an onset of dx/2



November 19, 2010 9:50 WSPC/INSTRUCTION FILE primitives

Visual Primitives 13

These problems are addressed in a two stages elimination process, described in

sections 3.3.1 and 3.3.2.

3.3.1. Elimination based on the line/edge bifurcation distance dleb

In the first elimination step, stronger interest points suppress weaker candidates

within a radius of dleb; because dleb is the minimal distance between two distinct

edges, any closer candidate is known to be redundant—as in Fig. 4b-ii. In prac-

tice, all candidates x(k,l) become ordered according to the associated amplitude

m(x(k,l)). Starting with the candidates with highest local amplitude, all other can-

didates x(k′,l′) within a radius dleb are discarded.e Since candidates are ordered

according to the local amplitude, a candidate corresponding to a stronger struc-

ture suppresses candidates from a weaker structure. Thereby, all non-distinct edges

(according to the line/edge bifurcation distance) become deleted while redundant

edges are preserved. The result of the first elimination stage on the test image in

Fig. 4a-i is shown in Fig. 4a-iv.

3.3.2. Elimination based on the influence radius dk

The local magnitude can be significantly affected by image structures within a radius

dk—as in Fig. 4b-iii. In the second elimination step, interest points that are not an

amplitude maximum on a line orthogonal to the local orientation are suppressed.

Each candidate position in a pair with distance smaller dk, is tested whether it is an

amplitude maximum, along a line orthogonal to the local orientation (see Fig. 4).

This is achieved by comparing each candidate’s amplitude to its direct neighbors,

on both sides of the edge, as indicated by the local orientation.f Then, redundant

structures, i.e., candidates that are not a local maximum, are discarded. The result

of the second elimination stage on the test image in Fig. 4a-i is shown in Fig. 4a-v.

The effect of the double elimination process at different scales can be seen in

Fig. 4a (for s = 1 ): Fig. 4a-i features a narrow triangle; from a signal perspective,

this represents a double-edge narrowing until it becomes a line, and finally vanishes.

Fig. 4a-ii illustrates the definition of the quantities dleb and dk. Fig. 4a-iii shows all

candidate interest points. Figs. 4a-iv and 4a-v show the remaining interest points

after the first and second elimination steps, respectively. Finally, Fig. 4a-vi show

the primitives extracted (larger scales lead to an interpretation of the triangle as a

line earlier towards the left of the triangle).

Fig. 5 shows the primitives extracted from an artificial test image, for different

scales: The image in Fig. 5a shows vertically alternating black/white step-edges,

getting narrower towards the right of the image; the primitives extracted at the three

e Note that for the quality of the process it is important that all positions are computed with
sub-pixel accuracy already at this stage.
f Note that the criterion ‘local maximum’ that is applicable for id2 structures cannot be applied
to edges, because edge-like structures form a ridge in the local amplitude surface (see Fig. 4a-ii).
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(a) test image (b) s = 1

(c) s = 2 (d) s = 4

Fig. 5. Illustration of the primitives’ sampling density: (a) shows an image with gradually (from

left to right) narrower white and black bars; (b, c, and d) show the primitives extracted for different
scales.

scales are shown in Fig. 5b, c, and d, respectively. Note that all of the narrower step

edges (to the right of the image) are distinctly extracted at the finer scale (s = 1)

in Fig. 5b; one is lost at a coarser scale (s = 2) in Fig. 5c; and for the coarsest scale

(s = 4), in Fig. 5d, edges are not extracted anymore since their structure is not

preserved at this scale.

3.4. Association of visual attributes

Once the redundant interest points have been discarded, other visual modalities

are computed at the remaining positions xi, to form a feature vector. Orientation

θ and phase ϕ are produced by the monogenic signal, as described in section 2.1.

The local optic flow at pixel x is denoted by f(x) and computed using the well

established Nagel–Enkelmann algorithm54.

Sub-pixel interpolation of visual modalities: Since descriptors’ positions

are computed with sub-pixel accuracy, we can also interpolate sub-pixel values for

orientation, phase, and optic flow using bi-linear interpolation. Let x̃ and ỹ be the

positions computed with sub-pixel accuracy (see section 3.2); let xl = bx̃c, yl = bỹc,
xh = dx̃e, and yh = dỹe (where bx̃c is the integral part of the real number x and

dx̃e = bx̃c+ 1); then the bi-linear interpolation computation leads to the formula:

M̃(x̃, ỹ) =
∑
x̂

∑
ŷ

σ(x̃, x̂) σ(ỹ, ŷ) M̂(x̂, ŷ), (5)

for x̂ ∈ {xl, xh} and ŷ ∈ {yl, yh}, σ(x, y) = 1 − |x − y|, and M ∈ {θ, ϕ,f} a

visual modality for which we have discrete measurements at every pixel M̂(x̂, ŷ),

and M̃(x̃, ỹ) is then interpolation at sub-pixel location (x̃, ỹ) for this modality.

Note that, for the interpolation of orientation and phase, the specific topology

of the orientation/phase space needs also to be taken into account. Hence, θ̂ is

transformed such that the distance between all pairs of the set θ̂(xl, yl), θ̂(xl, yh),

θ̂(xh, yl), θ̂(xh, yh) is smaller than π
2 and θ̂(x̃) is in [0, π).

Color sampling: Although color information is available at each pixel position,

it is heavily redundant, especially for edge and line structures. Moreover, an edge
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indicates a separation between two areas with distinct properties; therefore, special

care is required when associating color information to edge-like structures. First,

because the primitives are the result of a local filtering operation, it is appropriate

to sample color over an area of the image that is commensurate with the filter’s

extent. Second, in the case of a double edge, it is important that the color on the

inside of the double-edge is sampled separately from the color on the outside (see

Fig. 2). Because two edges have a minimal distance of dleb, the color is sampled

within a radius r = dleb. Therefore, we sample the pixels within a neighborhood

N(x, r), that contains all image pixels y such that y ∈ N(x, r)⇔ ||y − x|| < r.

The color modality is encoded in two different ways depending on the phase

value: for a step-edge structure (π4 < |ϕ| <
3π
4 ), it is natural to distinguish between

the color on each side of the edge (cl, cr); for a line structure (|ϕ| ≤ π
4 or |ϕ| ≥ 3π

4 ),

the color of a middle strip cm (i.e.on the actual line) is also encoded (see Figs. 2

and 4a-vi). It follows that pixels y ∈ N(x, r) are binned into two (if the phase

indicates an edge) or three (if the phase indicates a line) areas. If we consider a

vector n = (cos θ, sin θ)>, normal to the local orientation, the three binning areas

are defined by:

y ∈


Bl(x, r, θ) if (y − x) · n > +w,

Br(x, r, θ) if (y − x) · n < −w,
Bm(x, r, θ) else.

(6)

where w is the width of the middle strip where the line color is sampled. For edges,

color is encoded in only two vectors, one for each side, and w = 0; for lines, color

is encoded in three vectors. Because the maximal width of a line to be encoded by

a single primitive is dleb, the line color is sampled on a middle strip of this width:

w = dleb/2. The red, green, and blue components are then averaged in each bin.

Feature vector: From all this, we obtain a parametric description of local

image patches that we call a primitive πi. For a step-edge this representation is

πi = (xi, θ(xi), ϕ(xi), (cl(xi), cr(xi)),f(xi)) (7)

and for line structures

πi = (xi, θ(xi), ϕ(xi), (cl(xi), cm(xi), cr(xi)),f(xi)) . (8)

The primitives’ parameters are explicit and the set of all primitives provides a

condensed representation of the image. The condensation factor can be computed

by the ratio of the number of bits required to encode the list of primitives compared

to the number of bits taken by two RGB color images (to account for the temporal

information recorded by the optical flow modality). The condensation ratio rco is

recorded in Table 1, with first the worst case condensation (assuming one primitive

is extracted in each cell of the grid), and the effective rate on a real image in

bold face. For the finest scale (s = 1) we obtain an effective condensation ratio of

rco ' 1.2% (and rco ' 62% in the worst case).
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4. Computation of 3D-Primitives

So far we have presented multi-modal image descriptors that code 2D information.

However, these descriptors represent visual events occurring at a certain 3D posi-

tion in space. This depth information is essential for higher level processes because

of two reasons: First, humans and robots act in a 3D world where depth infor-

mation is valuable for, e.g., navigation or grasping. Second, since many structural

dependencies of visual events (e.g., rigid body motion) take place in 3D, depth in-

formation is essential for their formalization and for the disambiguation processes

they underlie55. In the following, we describe an extension of the image primitives

(2D-primitives) to spatial primitives (3D-primitives); thus, the semantic information

coded in the image primitives is transferred into the 3D domain. It is well known

that pairs of matching features between two stereo views can be used to reconstruct

depth5,56. Given a pair of corresponding points between the left and right images,

a meaningful 3D interpretation of this stereo-pair is a 3D point. The 2D-primitives

presented herein, however, encode multi-modal information, and therefore a stereo-

pair of matching 2D-primitives ought to reconstruct this multi-modal information

in space: the resulting entity is called a 3D-primitive.

4.1. Stereo matching of 2D-primitives

There exists a wealth of studies on stereo matching of image edge features: e.g., using

the sign of the zero-crossings and their orientation57,58, length and orientation of

line segments59, normalized cross-correlation between the pixels’ surrounding lines

(or curves)6. The present work uses of the multi-modal information carried by the

2D-primitives as a matching criterion and assumes a calibrated stereo set-up and

known epipolar geometry to reduce the correspondence search to a line5,56.

The similarity distance between two primitives πl and πr is given by:

dπ(πl,πr) = w · (dθ(θl, θr), dϕ(ϕl, ϕr), dc(c
l, cr), df (f l,fr))>, (9)

where w is a vector containing the relative weight of each modality, with ‖w‖ = 1.

The actual distance measures dm(ml,mr) can be chosen for each visual modality

m ∈ {θ, ϕ, c,f}. For example, the color distance can be computed in different color

spaces.

4.2. Geometric information: pose reconstruction

3D-primitives need to encode the reconstructed 3D orientation Θ beside the 3D

position X. Considering a stereo pair of corresponding 2D-primitives πl and πr,

this orientation is computed as the intersection of two planes in space, each defined

by the optical center of one camera and the line L(πl,πr) in the image plane

described by the 2D-primitives position (xl and xr) and orientation (θl and θr)

(see Fig. 6):

L(πl,πr) ≡ P l(xl, θl) ∩ P r(xr, θr), (10)
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(a) stereo reconstruction
(b) image (c) 3D-primitives

Fig. 6. Illustration of the reconstruction of a 3D-primitive from a stereo pair of 2D-primitives.

where P l(xl, θl) is the 3D plane back-projected by the 2D line formed from a prim-

itive with position xl and orientation θl, in the left image. The intersection of these

two planes in space is a 3D line L(πl,πr) and the normalized orientation vector of

this line defines the reconstructed 3D-primitive’s orientation in space (Θ).

The 3D position X(πl,πr) is given by the intersection between both optical

rays. Due to sampling error, those two rays will rarely intersect in space, and it

is customary to reconstruct the point in space that minimizes the distance to the

two back-projected rays56. In this case, this would generally lead to a point that

does not lie on the reconstructed 3D line; therefore we will rather compute the

intersection between the left back-projected ray and the right back-projected plane.

X(πl,πr) ≡ Ll(xl) ∩ P r(xr, θr) (11)

where Ll(xl) is the ray back-projected from the position xl in the left image. This

biases the reconstructed position towards the position in the left image but ensures

consistency with the reconstructed line.

4.3. Appearance information: reconstruction of phase and color

Phase Φ and color C are reconstructed in space as the mean value between the two

corresponding image primitives:

Φ = 1
2 (ϕL + ϕR) and C = 1

2 (cL + cR). (12)

Note that, because 2D-primitives are matched across stereo according to multi-

modal similarity, these phase and color values will be very similar, justifying the

use of the mean.

Because color and phase encode surface information (respectively contrast and

color transition across an edge), we need to define a 3D surface patch onto which

they apply. Unfortunately, it is not possible to reconstruct the exact surface from

local information: for a pure edge, the surface on one side does not allow finding

the additional correspondence that would be required for the reconstruction of a

3D surface. Moreover, in case of a depth discontinuity, the color information might



November 19, 2010 9:50 WSPC/INSTRUCTION FILE primitives
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come from a 3D position that is completely independent from the 3D orientation

information (e.g., an object in the background). Therefore, we define an a priori 3D

surface (see Fig. 6a) using the 3D orientation of the primitive, and an additional

Local Surface Guess Vector Γ = Θ×Vpov such that the surface is normal to a vector

Vpov that encodes the observer’s perspective on the 3D-primitive.

The vector Vpov is defined as Vpov = 1
2

(
Ll + Lr

)
, where Ll and Lr are the two

optical rays joining the location of the 3D-primitive X with the optical center of the

left and right cameras. The vector Γ also identifies each side of the 3D line, which

is critical for modalities like color and phase that describe the modality transition

across the contour. Each side of the 3D-primitive is associated to the corresponding

side of the 2D-primitives by back-projecting this vector on each image plane, as

indicated by γl and γr in Fig. 6a. Note that this vector is merely used for display

purposes; a more reliable estimate needs to be inferred at a later processing stage

from global considerations such as an explicit description of the 3D contour, the

surface or even the object it belongs to.

4.4. 3D-primitive feature vector

In summary, the above sections have defined a scheme the reconstruction of spatial

primitives Π(i,j), with a parametric description:

Π(i,j) = (X,Θ,Φ, (Cl,Cm,Cr)), (13)

where the j index represents the alternative 3D entities generated from different

stereo correspondences in the right image to the ith primitive in the left image. Since

a final decision about stereo match can usually not be made solely based on local

information, multiple hypotheses can be kept at this stage; this allows disambigua-

tion by later processes such as perceptual grouping60,55, or motion estimation1,55.

Fig. 6c shows the 3D primitives reconstructed from the image in Fig. 6b.

5. Relations and Operations Defined on Primitives

Because primitives are local symbolic descriptors, they carry additional semantic in-

formation, that defines the way a given primitive relates to its neighbors and what

combinations of primitives are of relevance; such combinations can be expressed as a

set of relations between pairs or groups of primitives. For example, a smooth planar

surface will be described by several strings of collinear primitives that represent its

contours; those primitives will generally be co-planar (see Fig. 7c,h) and isochro-

matic (see Fig. 7b,g). Hence, an important aspect of the primitive representation is

that such second-order relations between primitives can be defined efficiently, while

condensation keeps the relational space within a tractable size.

Good continuation (collinearity): We defined 2D-primitives as local edge

descriptors, and therefore we expect them to lie on image contours; conversely,

image contours are described by strings of primitives. In a study by Pugeault et
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Fig. 7. Sample relations between primitives and their illustration on an example: (a) normal

distance; (b) isochromacy; (c) coplanarity; (d-e) image and the 3D primitives of a sample object.
Illustration of all primitives related to a selected one: (f) all primitives that has a normal distance

of maximum 1.5 cm to the selected primitive; (g) all primitives that are isochromatic with the

selected primitive; (h) all primitives that are coplanar with the selected primitive.

al60, a measure of the likelihood that two 2D-primitives belong to the same image

contour is defined using a mixture of Gestalt rules of proximity, good continuation

and similarity.

Co-planarity: 3D-primitives have a position and an orientation in space. There-

fore, we can say that two primitives are coplanar if the second primitive’s orientation

Θ2 lies in the plane formed by the two positions X1, X2 and the first orientation

Θ1 (see Fig. 7c,h).

Isochromacy: The relation of isochromacy expresses the similarity between

two primitives’ color. Assuming that the two primitives describe the same surface,

we compare their color modality on the inner side, neglecting the color on the outer

side (see Fig. 7b,g).

Normal distance: In addition to the Euclidean distance, the normal distance

(i.e., the distance between the line that goes through one primitive to the other

primitive) expresses a meaningful relation between parallel lines (see Fig. 7a,f).

Rigid body motion: One important type of motion, called Rigid Body Motion

(RBM), describes the possible motions of rigid objects. For example, it can describe

the motion of manipulated objects, or the camera itself (ego-motion). If the motion

of an object is known, the future position and appearance of a 3D-primitive can

be predicted from this motion: the change of position and orientation induced by a

RBM (M(Π)) can be computed analytically5; phase and color can be approximated

to be constant.

The condensation of information allows to actually use such second-order rela-

tions between primitives which would be computationally intractable at the pixel

level. Note that the relations defined above can be combined to form even stronger

visual events, e.g., a combination of isochromacy with co-planarity allows us to infer

probable surfaces in the image, and is used for generating grasping hypotheses in

section 6.2.
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(a) pan (b) basket (c) pot (d) pose

Fig. 8. Learning object models from manipulation.

6. Applications

The primitives have been used in a number of applications that require general 3D

scene representations, both in computer vision2,3,1 and in vision-based robotics61,62,

including the humanoid system ARMAR63 (see also Fig. 9e). The broad applicabil-

ity of this representation stems from the goal to develop a generic vision machinery,

in analogy to the human visual system, providing a disambiguated, rich and explicit

interpretation of visual scenes.

The computation of the 3D-primitives, including the extraction of 2D-primitives

in two stereo images (512 × 512 pixels) as well as the stereo matching and the

reconstruction, is currently performed with '5Hz on a hybrid hardware architecture

consisting of one GPU, on which the pixel-wise filtering processes are performed,

and an 8 core machine, on which the higher level computation is done. A real-time

implementation of this system is discussed by Jensen et al64.

The following briefly discusses the applications in the robotic domain, stressing

the importance of the three properties explicitness, orthogonality, and condensation.

6.1. Object model learning

Structure from motion56 allows for the reconstruction of an object’s shape from the

knowledge of its motion. The visual representation presented in this study presents

some advantages for this purpose: encoding the object’s contours allows us to rep-

resent the object’s shape and appearance (via the color and phase modalities) in a

compact yet descriptive manner. As discussed in section 5, motion knowledge allows

for accurate prediction of a primitive’s feature vector at a later stage.

For this task, an object is manipulated by a robotic arm in front of a pair of

stereo cameras. Since the arm’s motion is known and the stereo and robot systems

are properly calibrated, the arm’s motion can be used to track reliably the 3D-

primitives describing the manipulated object. Conversely, it can be inferred that

3D-primitives that do not move according to the arm’s motion are not part of

the manipulated object. Furthermore, object features that were not initially visible

(e.g., occluded) can be added later on to the object representation; in this way, a

full 3D model of the object can be generated1.

This is illustrated in Fig. 8. There, Fig. 8a shows on the left hand side the robotic



November 19, 2010 9:50 WSPC/INSTRUCTION FILE primitives

Visual Primitives 21

(a) EGAs

(b) object (c) hypothesis

(d) action (e) ARMAR

(f) grasping options

(g) learned grasps

Fig. 9. The learned grasping options associated to the learned object

setup holding a pan-like object; on the right hand side, the learned object model

is shown from a different viewpointg. Also, Figs. 8b and c show the shape model

obtained for two different objects.

The acquired representations have been used for pose estimation using a Markov

network2; the primitives’ property of explicitness allows for the definition of a strong

local matching function, providing confidences that become propagated through the

network to reach a global statement about the 6D pose of the object. In Figure 8d,

the result of a pose estimation with the learned model is shown.

6.2. Generating grasping hypotheses

The proposed representation has also been used to define grasping hypotheses in a

scene filled with unknown objects4 (see Fig. 9). Essentially, pairs of co-planar and

isochromatic (see section 5) primitives are used to define planes that are good candi-

dates for an initial grasping hypothesis. Each plane’s pose in space is fully defined by

a pair of non-collinear 3D-primitives and it elicits several grasping hypotheses—see

Fig. 9a. Fig. 9c shows one grasping hypothesis elicited by coplanar pairs of 3D-

primitives in the visual representation extracted from the object in Fig. 9b. Fig. 9d

shows the realization of the grasp by the robot ARMAR63 (Fig. 9e). The fact that

multiple grasping hypotheses become generated by the feature-action association

indicated in Fig. 9a (see Fig. 9f for three out of usually hundreds of such associa-

tions connected to one object) allows the system to attempt grasping objects in its

environment without object knowledge or prior segmentation. In practice, such a

straightforward association of pairs of primitives to actions achieved success rates

of around 50%. It is the explicitness and orthogonality properties of the primitives

that allow for these associations: the appearance information is used to associate

g The gap in the representation on the pan’s handle correspond to the part occluded by the gripper
and could be filled by using at least one alternative grasp
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primitives likely to belong to the same object, and the geometric information allows

for the computation of the 6D pose of the plane the gripper can grasp.

6.3. Birth of the object and the learning of grasp affordances

If evaluated as successful (making use of haptic information), a grasping action such

as the one proposed in section 6.2 endows the system with physical control over ob-

jects, as required by the object learning sketched in section 6.1. This provides a

robot with a basic exploratory behavior: 1) try to grasp the (unknown) environ-

ment; 2) if successful, manipulate the object; and 3) learn a full 3D representation

of the object. Using this scheme, a robot is able to learn about new objects in its

environment, and to associate successful grasping actions to pairs of 3D-primitives

that are part of the object model (see figure 9g). We coined the term Birth of the

object61 for the robot’s ability to discover unknown objects from the combination

of these three behaviors. In this way, an initially naive robot is able to progres-

sively learn an internal representation of the world with only minimal prior world

knowledge61.

Making use of the ability to do pose estimation (as discussed in section 6.1)

and grasp hypotheses computed as described in section 6.2, successful grasps can

be associated to the object while the robot is playing with the object. In Fig. 9g we

show the learned object with the associated successful grasping actions; black lines

denote successful grasps, and their orientations reflects the corresponding pose of

the robot’s gripper’s.

7. Conclusion

This paper presented a framework that initiates the transition from the signal-

level representation of visual information towards symbolic representation which is

motivated by processing in the human visual cortex. The resulting representation

is condensed and carries rich and explicit semantic information where geometric

and appearance information is coded in an orthogonal manner. This allowed for

the definition of higher level relations between the primitives that were used for

disambiguation in, e.g., object learning processes as well as for visual feature-action

associations.

The three properties of this representation, together with the relations defined

on them, allowed for their use in a number of applications, in particular as a vision

interface of a cognitive robot system. The visual system provides the system with a

powerful front-end giving it access to important structural properties of the visual

scene that allows for efficient learning and bootstrapping processes. Future work

will be on the enhancement of the early cognitive vision system in terms of the kind

of image structures we represent in addition to edges (e.g., junctions and textures)

as well as the relations between them.
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Supérieure d’Informatique, Électronique, Automatique (Paris)

in 2004. He obtained his Ph.D. from the University of Göttingen

in 2008, and subsequently worked as a Research Associate at the

University of Edinburgh and as an assistant professor at the uni-

versity of Southern Denmark for two years. He is now working as

a Reseach Fellow at the University of Surrey, United Kingdom.

Nicolas Pugeault is the author of over 30 technical publications, proceedings,

editorials and books. His research interests include cognitive vision, machine learn-

ing and articifial intelligence.
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29. F. Wörgötter, N. Krüger, N. Pugeault, D. Calow, M. Lappe, K. Pauwels, M. Van Hulle,
S. Tan, and A. Johnston. Early cognitive vision: Using gestalt-laws for task-dependent,
active image-processing. Natural Computing, 3(3):293–321, 2004.

30. D.G. Lowe. Distinctive Image Features from Scale–Invariant Keypoints. IJCV,
60(2):91–110, November 2004.

31. T. Kadir, A. Zisserman, and M. Brady. An affine invariant salient region detector. In
Proc. of the ECCV, pages 228–241. Springer–Verlag, 2004.

32. T. Tuytelaars and L. Van Gool. Matching widely separated views based on affine
invariant regions. IJCV, 59(1):61–85, 2004.

33. H. Bay, T. Tuytelaars, and L. Van Gool. SURF: Speeded Up Robust Features. In
Proc. of the ECCV, 2006.

34. C.G. Harris and M. Stephens. A combined corner and edge detector. In 4th Alvey
Vision Conference, pages 147–151, 1988.

35. K. Mykolajczyk and C. Schmid. An affine invariant interest point detector. In Proc.
of the ECCV. Springer–Verlag, 2002.

36. C. Schmid, R. Mohr, and C. Baukhage. Evaluation of interest point detectors. IJCV,
37(2):151–172, 2000.

37. K. Mikolajczyk and C. Schmid. A performance evaluation of local descriptors. IEEE
TPAMI, 27(10):1615–1630, 2005.

38. P. Moreels and P. Perona. Evaluation of features detectors and descriptors based on
3d objects. In Proc. of the ICCV, volume 1, pages 800–807, 2005.

39. J.H. Elder. Are edges incomplete ? IJCV, 34:97–122, 1999.
40. I. Biederman and G. Ju. Surface vs. edge-based determinants of visual recognition.

Cognitive Psychology, 20:38–64, 1988.
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60. N. Pugeault, F. Wörgötter, and N. Krüger. Disambiguating multi–modal scene rep-
resentations using perceptual grouping constraints. PLoS ONE, 5(6), 2010.
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