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Abstract

In its early stages, the visual system suffers from a lot of ambiguity and noise that severely limits the performance of early
vision algorithms. This article presents feedback mechanisms between early visual processes, such as perceptual grouping,
stereopsis and depth reconstruction, that allow the system to reduce this ambiguity and improve early representation of
visual information. In the first part, the article proposes a local perceptual grouping algorithm that — in addition to
commonly used geometric information — makes use of a novel multi–modal measure between local edge/line features.
The grouping information is then used to: 1) disambiguate stereopsis by enforcing that stereo matches preserve groups;
and 2) correct the reconstruction error due to the image pixel sampling using a linear interpolation over the groups. The
integration of mutual feedback between early vision processes is shown to reduce considerably ambiguity and noise
without the need for global constraints.
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Introduction

Both human and machine perception involve a progressive

abstraction of visual information, from the raw signal provided by

the eyes or the cameras towards symbolic, object–centric

representations [1]. One problem endemic to visual perception

is that each abstraction step requires the taking of some decision

about the information, effectively interpreting it; the large

amount of noise and ambiguity in the visual signal may lead to

erroneous interpretations, as discussed by, e.g., Aloimonos and

Shulman [2]. There exist several approaches to solve this

problem. One is to design features that describe more closely

the original signal, and therefore require less abstraction.

However, the resulting representation only describes the

appearance of image patches as well as image noise, and lacks

a semantic description of shapes — useful, e.g., for grasping,

robotic control, planning. Nonetheless, a large amount of work

on signal processing and invariant feature descriptors [3] lead to

significant progress for tasks like navigation [4] and object

recognition [5]. An alternative is to extract abstract symbolic

representations directly from the image. One notable attempt by

Nevatia and colleagues [6,7], makes use of a feature hierarchy for

stereo reconstruction. Another notable class of systems is the

model–based vision, where a large amount of world knowledge is

available and is used to disambiguate and interpret the visual

signal. One problem with the latter approach is that the large

amount of ambiguity and noise present in images can lead an

early extraction of symbolic features to fail, failures which are

difficult to correct. The dilemma between those two approaches

can be expressed in terms of the bias/variance dilemma in neural

networks [8]. Namely, the use of sophisticated models in vision

introduces more bias in the system, whereas signal based

approaches lead to more variance.

In the present work, we attempt to address the above dilemma

by proposing a gradual abstraction that postpones decision taking

using mutual feedback between two mid–level visual processes,

namely perceptual grouping and stereopsis, to reduce ambiguity

and noise. Ambiguities addressed here include incorrect stereo

matches and inaccurate 3D reconstructions. Moreover, properties

of the local signal such as local estimates of orientation, phase and

colour will also be stabilised by perceptual grouping mechanisms.

This work makes use of a sparse symbolic scene representation

based on multi–modal primitives [9]. In this work, the term ‘multi–

modal’ stresses that the descriptors cover different visual

modalities such as motion, orientation and colour; it is not

meant to indicate different sensorial modalities. Primitives form a

local feature vector containing multi–modal visual information

covering appearance as well as geometric information, in 2D and

3D. Such multi–modal descriptors offer certain advantages for

the representation of visual scenes. For example, they allow for

the explicit formulation of visual semantics in terms of meaningful

local descriptors and higher–order relations between them, such

as motion, co–planarity and similarity of appearance (see, e.g.,

[10]). One property of symbolic representations is that the

transfer of visual information to a symbolic level increases the

predictiveness of visual events [11] and at the same time

decreases the memory and bandwidth required to process and

transfer information. Hence, in these representations, regularities

between visual events can be efficiently used for disambiguation.

Primitives–based visual representations are used in a variety of
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applications, covering, e.g., object learning [12] and grasping

[13].

The contributions in this paper are threefold: first we propose a

local perceptual grouping mechanism making full use of the multi–

modal and semantic information carried by the visual primitives;

second, we propose a stereo matching scheme for primitives,

allowing for the reconstruction of the 3D equivalent of 2D

primitives; third, we investigate how perceptual grouping reduces

ambiguities in the reconstructed 3D representation. In the

following, these contributions will be described in more detail

and put into the context of related work.

This paper’s first contribution is a perceptual grouping scheme

making use of the multi–modal information carried by the

primitives. Perceptual grouping can be divided into two tasks: 1)

defining an affinity measure between primitives and using it to

build a graph of the connectedness between primitives, and 2)

extracting groups, which are the connected components of this

graph. We will only define the affinity measure between

primitives, and not extract the groups themselves explicitly, as

we only need a primitive’s local grouping information to apply

the correction mechanisms proposed in this paper. Similar

affinity measures have been proposed [14,15], formalising a good

continuation constraint, and Elder and Goldberg [16] included the

intensity on each side of the contour into a Bayesian formulation

of grouping. We go beyond this work by proposing a multi–

modal similarity measure, composed of phase, colour and optical

flow measurement, and combine it with a classical good

continuation criterion forming a novel multi–modal definition

of the affinity between primitives.

As a second contribution, this work extends the work by

Krueger and Felsberg [17] by enriching the multi–modal stereo

matching using local motion [18] and, more importantly, by

evaluating statistically the importance of the different visual

modalities for stereo matching using ground truth range

data.

As a third contribution, we make use of perceptual groups of

primitives to disambiguate stereo matching and correct the 3D

scene reconstruction. Grouping allows for the interpolation of

visual properties such as position, local orientation, phase and

colour, and thus helps to improve local feature extraction. This

paper studies how perceptual grouping information can be used to

disambiguate stereopsis and 3D reconstruction using primitives. If

we assume that image contours (2D) are likely to be the projection

of 3D contours on the image, then we can expect all 3D contours

to project as 2D contours on each camera plane (except in the case

of partial occlusions). Conversely, this also implies that any

contour in one image has a corresponding contour in the second

image. We therefore propose a non–local external stereo confidence

measure, which estimates how well a primitive’s neighbours that

belong to the same group agree with that primitive’s putative

stereo correspondences. This allows for discarding a large number

of putative stereo correspondences, hence reducing the ambiguity

of the stereo matching and scene reconstruction processes.

Moreover, the interpolation of the curves described by groups of

primitives is used to correct these primitives’ geometric and

appearance modalities.

The scheme presented in this paper is illustrated in Figure 1,

where solid lines stand for forward dependencies and dashed

lines for feedback mechanisms. The local symbolic representa-

tion is extracted from the images. From this representation, we

extract perceptual groups (i.e., contours) and we use corre-

spondences across a pair of stereo views of the scene to

reconstruct a local and symbolic 3D representation of the

scene, equivalent to the 2D image representations it is

reconstructed from; this is the feedforward part of the scheme,

represented with solid lines. Then, the perceptual grouping

information is used to correct the 2D symbolic image

description, the stereo matches, and the reconstructed 3D

scene representation; this is the corrective part of the scheme,

represented with dashed lines.

Methods

This section is structured as follows: first, the multi–modal

primitives are described; second, distance measures for all

modalities are proposed; third, the grouping mechanism is

presented; fourth, the stereo matching scheme is discussed; then,

a scheme for increasing stereo matching reliability from grouping

information is described; finally, we present a scheme to correct

2D and 3D primitives’ position and orientation by interpolating

the curves described by groups of primitives.

2D primitives
Numerous feature detectors exist in the literature (see

Mikolajczyk and Schmid [3] for a review). Any feature based

approach can be divided into two complementary tasks: an interest

point detector [19,20] and a descriptor encoding information from

a local patch of the image at this location, that can be based on

histograms [3,21], spatial frequency [22–24], local derivatives

[25–27], steerable filters [28], or invariant moments [29]. In [3],

these different descriptors have been compared, showing a best

performance for SIFT–like descriptors (Scale Invariant Feature

Transform [21]).

The primitives we will use in this work are local, multi–modal

edge descriptors, described in Ref. [9]. In contrast to the above

mentioned features, primitives focus on giving a semantically and

geometrically meaningful description of the local image patch.

The importance of such a semantic grounding of features for a

general purpose vision front–end, and the relevance of edge–like

structures for this purpose are discussed by Elder [30].

In the first step, an event map and the associated local phase

are computed using the monogenic signal [31] — note that other

signal processing could alternatively be used (e.g., steerable

filters [28]). The 2D primitives are sparsely extracted at

locations in the image that are most likely to contain events

(edges or lines); these locations are detected using the local

intrinsic dimension [32]. Sparseness is assured using a classical

winner–take–all operation, which guarantees that the extracted

primitives describe different image patches. Multi–modal

information is gathered locally from the image, including the

position x of the centre of the patch, the orientation h of the

event, the phase w of the signal at this point, the colour c
sampled over the image patch on both sides of the event, and

the local optical flow f computed using the classical Nagel

algorithm [33] (the flow is disregarded for still images). The

phase encodes the type of contrast transition across the event,

e.g., dark to bright edge or dark line on bright background. See

Ref. [22–24]. Consequently, a primitive is described by the

multi–modal vector

p~ x,h,w,c,fð ÞT : ð1Þ

The set of primitives describing an image is called image

representation and written I l and I r for images from the left and

right camera. The image representation extracted from one image

is illustrated in Figure 2. In the upper–left corner, panel A shows

one image extracted from an indoor video sequence; panel B

Reducing Visual Ambiguity
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Figure 1. Summary of the scheme presented in this paper. In this figure, solid arrows mean direct dependencies and dashed lines corrective
feedback.
doi:10.1371/journal.pone.0010663.g001

Figure 2. Illustration of the primitive extraction process from an indoor video sequence. A The original image and a magnified detail. B
Harmonic filtering (using, e.g., Gabor wavelets, monogenic signal or steerable filters) provides estimates of the local (i) magnitude, (ii) orientation, and
(iii) phase of the signal. C Primitive extraction: (i) the symbolic primitive, where 1 stands for the orientation, 2 for the phase, 3 for the colour, and 4 for
the optic flow; (ii) example of the primitives extracted from the image detail.
doi:10.1371/journal.pone.0010663.g002
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shows the result of a local filtering; and panel C shows the

extracted primitives.

Note that these primitives are of lower dimensionality than, e.g.,

SIFT features (12 vs. 128) and can therefore suffer from a lesser

distinctiveness (two unrelated primitives have a greater chance to

have a similar aspect). Nonetheless, we will show in the results

section that they are distinctive enough for a reliable stereo

matching if the epipolar geometry of the cameras is known. The

rich information carried by the 2D primitives can be used to

reconstruct them in 3D, providing a more complete scene

representation. Geometric meaning allows a description of

proximate primitives in terms of perceptual grouping, as will be

discussed in the following section.

Metrics of 2D primitives
In this section, we define metrics for each of the primitives’

modalities. Those metrics will be used in the following for

perceptual grouping of primitives and for stereo matching.

Figure 3 illustrates how the distance measures defined here are

combined. In the case of perceptual grouping (solid lines),

proximity, collinearity and co–circularity measures between a

pair of primitives are merged into a Geometric affinity, whereas

the distances in phase, colour and optic flow form the Multi–

modal affinity. The combination of those two form the overall

affinity c gi,j

� �
that is used to group 2D primitives. In the case of

stereopsis (dashed lines) the orientation distance between the two

primitives replaces the geometric criterion. Then the multi–

modal similarity is computed from orientation, phase, colour and

optic flow distances.

Note that, in the context of perceptual grouping, the orientation

difference is replaced with a more sensible interpretation of the

good continuation constraint, combining proximity, collinearity

and co–circularity; in contrast, the stereo similarity makes direct

use of the orientation difference.

Orientation: If we consider two primitives pi and pj ,

respectively with the orientations hi and hj , then their orientation

distance is

dh(pi,pj)~
2

p
arctan sin(hj{hi),cos(hj{hi)

� ��� ��: ð2Þ

The
2

p
factor ensures that the orientation metric is between ½0,1�,

with 0 standing for parallel orientations, 0.5 for a 45 degrees angle

and 1 for orthogonal orientations.

Phase: The phase metric dw is

dq(pi,pj)~
1

p
arctan sin(wj{wi),cos(wj{wi)

� ��� ��: ð3Þ

The
1

p
factor ensures that the phase metric is between ½0,1�, with 0

standing for two primitives encoding the contrast transition (e.g.,

bright to dark edge), and 1 standing for opposite contrast (e.g., a

dark line and a bright line).

Colour: The colour metric dc is

dc(pi,pj)~
1

2

X
q[fl,rg

dc,q, ð4Þ

where dc,q is defined in HSV space as

dc,q(pi ,pj)~

da(H
q
i ,H

q
j )zDSq

j {S
q
i DzDV q

j {V
q
i D

3
if Vw0:1,Sw0:1,

DSq
j {S

q
i DzDVq

j {V
q
i D

2
if Vw0:1,Sƒ0:1,

DV q
j {V

q
i D otherwise:

8>>>>><
>>>>>:

ð5Þ

Because of the conical topology of the HSV space, the hue

component H is basically random for very low saturation S,

and saturation is random for low values of V . This equation

discards hue information for low saturation, and saturation

information for low value of V , and otherwise weights evenly

the colour components. In Eq. 5, da stands for the angular

distance

da(a1,a2)~
1

p
arctan sin(a2{a1),cos(a2{a1)ð Þj j; ð6Þ

and Hl
i (Hr

i ), Sl
i (Sr

i ) and Vl
i (Vr

i ) are the hue, saturation and

value components on the left (right) side of the primitive pi.

Optic Flow: The optic flow df metric is

df ~
1

p
arccos

f i
:f j

max(Ef iE,Ef jE)

 !
: ð7Þ

Note that these metrics are the same used in Refs. [17,18].

Figure 3. Illustration of the measures used in this paper and how they are combined. Solid arrows indicate the metrics used for stereopsis,
dashed lines the metrics used for perceptual grouping.
doi:10.1371/journal.pone.0010663.g003

ð5Þ
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Perceptual grouping of 2D primitives
Since the 1930’s, the Gestalt psychologists suggested a collection

of axioms describing the way the human visual system binds

together features in an image [34–36]. This process is generally

called perceptual grouping and the Gestalt psychologists proposed that

it is driven by properties like proximity, good continuation,

similarity and symmetry, amongst others. More recently, psycho-

physical experiments measured the impact of different cues for

perceptual grouping (see, e.g., Ref. [37]). Furthermore, Brunswik

and Kamiya [38] postulated that these properties should be related

to statistics of natural images. This was later confirmed by several

studies [39–41].

We defined the primitives as local edge descriptors, and

assumed that a group of primitives describes a contour in the

image. The Gestalt rule of proximity implies that primitives that are

closer to one another are most likely to lie on the same contour.

According to the Gestalt rule of good continuation, image contours

are expected to be continuous and smooth (small and constant

local curvature); thus, two proximate primitives in a group are

expected to be either nearly collinear, or co–circular. According to

these rules, a strong inflexion in a contour will lead this contour to

be described as two groups, joining at the inflection point.

Furthermore, the position and orientation of primitives that are

part of a group are the local tangents of the contour it describes.

Finally, we would expect a contour’s properties such as colour (on

both sides) to change smoothly (or not at all) along this contour.

This is formalised by the rule of similarity, which states that similar

primitives (in terms of the colour, phase and optical flow

modalities) are most likely to belong together.

The two first rules are joined into a Geometric constraint, that is

combined with a multi–modal Appearance constraint into an overall

affinity measure.

Geometric constraints. The first constraint we enforce

during grouping stems directly from the symbolic quality of the

primitives: primitives are local event descriptors and therefore,

according to the good continuation law, they should be locally

nearly collinear or co–circular to form a group. Effectively, we

compute this constraint as a combination of proximity, collinearity

and co–circularity measures.

If we consider two primitives pi and pj in I , then the likelihood

that they both describe the same contour C can be formulated as a

combination of three basic constraints on their relative position

and orientation — see Figure 4.

Proximity: The proximity measure is given by

dp(pi,pj)~exp {max 1{
DDvijDD
rm

,0

� �	 

: ð8Þ

Here, r stands for the radius of the primitive in pixels, and the

quantity rm is the maximal distance between two primitives for

them to be compared; more distant primitives will not be

compared and therefore have a null similarity. The quantity

EvijE stands for the distance (in pixels) separating the two

primitives’ centres. We found experimentally that m~5 proved

to be a good value — i.e., grouped primitives are distant by five

timed their size at most.

Collinearity: The collinearity measure is

dco(pi,pj)~ sin
jaijzjaj j

2

� �����
����: ð9Þ

Co–circularity: The co–circularity measure is

dci(pi,pj)~ sin
aizaj

2

� ���� ���; ð10Þ

where ai and aj are the angles between the line joining the two

primitives centres and the orientation of pi and pj , respectively (see

figure 4).

Geometric affinity: The combination of those three criteria

forms the geometric constraint:

Gi,j~ P
x[fp,co,cig

1{dx(pi,pj)
� �� �1

3
ð11Þ

where Gi,j is the geometric affinity between two primitives pi and

pj . This affinity models the likelihood of a curve tangent to the

lines defined by the two primitives pi and pi; we have Gi,j~1 for a

perfect match.

Appearance constraints. Effectively, the more similar the

modalities between two primitives are, the more likely are those

two primitives part of the same event. Note that Elder and

Goldberg [39] already proposed to use the intensity as a cue for

perceptual grouping, yet here we use a combination of phase,

colour, and optical flow modalities of the primitives to decide,

using the value of M, if they describe the same event.

Appearance affinity: The appearance–based affinity is

Mi,j~1{
X

m[fw,c,f g
wmdm pi,pj

� �
, ð12Þ

where wm is the relative weighting of the modality m [ fw,c,f g,
with

P
m[fw,c,f g wm~1, and dm refers to the metrics defined in

equations 3, 4, and 7; the modality weights were all set to wm~
1

3
;

Therefore, Mi,j~1 stands for a perfect match between two

primitives. Because the geometric constraint models the relative

orientation of two primitives in a manner more adapted to the

problem of grouping line segments, the orientation metric is not

part of the multi–modal constraint.

Overall affinity. We define this affinity from Equations (11)

and (12), such that:

1. two primitives complying poorly with the good continuation

rule have an affinity close to zero; and

2. two primitives complying with the good continuation rule, yet

with strongly dissimilar modalities, will only have an average

affinity.

Two primitives pi and pj form a link gi,j if they share a

significant affinity (significant being set by a threshold on the

overall affinity), and the confidence c gi,j

� �
of this link is given by

Figure 4. Illustration of the values used for the collinearity
computation. If we consider two primitives pi and pj , then the vector
between the centres of these two primitives is written vij , and the
orientations of the two primitives are designated by the vectors ti and
tj , respectively. The angle formed by vij and ti is written ai , and between
vij and ti is written aj . r is the diameter of the primitive in pixels.
doi:10.1371/journal.pone.0010663.g004
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the overall affinity:

c gi,j

� �
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gi,j

:Mi,j

p
: ð13Þ

We found experimentally that applying a threshold of c gi,j

� �
§0:5

yields a good grouping, as can be seen in Figure 5.

This affinity is also a valid estimate of the likelihood for pi and

pj to be part of the same contour C. In the following, we will

consider that a link gi,j between two primitives exists if its

confidence c gi,j

� �
is large enough. We will call neighbourhood

N (pi) of a primitive pi all primitives pj such that gi,j is a

link:

N (pi)~ pj DAgi,j

� �
: ð14Þ

Figure 6 shows the links extracted, along with the different

modal affinities. The links extracted for different thresholds tA on

the affinity are shown in Figure 5. In the following, links are

extracted only if c gi,j

� �
w0:5. The lines in these figures describe

strings of grouped primitives. One can see in these images that the

major image contours are adequately described. This criterion is

what is meant in the rest of the paper every time we refer to

‘groups’.

Stereopsis using 2D primitives
In this section, we extend the concept of multi–modal primitives

to 3D: first, we define a local multi–modal matching function; then

we define the 3D primitives.

Classical stereopsis [42,43] allows for the reconstruction of 3D

points from pairs of corresponding points in two stereo images. A

review of stereo algorithms was presented by Brown et al. [44].

Dense two–frames stereo algorithms (i.e., matching each and every

pixel in the first image with a pixel in the second) were also

compared by Scharstein and Szeliski [45]. The present work

differs from classical approaches insofar that symbolic multi–

modal entities are matched, and reconstructed, rather than points.

Although it is commonplace to use complex features (e.g., SIFT)

for matching, only the locations in space are generally recon-

structed, whereas the present work reconstructs a symbolic local

interpretation in space. The proposed method is local and makes

use of the epipolar constraint to limit the scope of the

correspondence search.

If we consider a 2D primitive pi in the left image I l , all 2D

primitives pp in the right image that lie nearby its epipolar line ji

are considered as putative correspondences, written si?p. The

difference between the image coordinates of pi and pp is generally

called the disparity. We will differentiate between the orthogonal

distance from the centre of pp to the epipolar line ji, called normal

disparity, and the distance along this line, called tangential disparity.

The normal disparity expresses how strictly the epipolar constraint

is satisfied. A certain tolerance is required here due to the

representation’s sparseness. In the following all primitives with a

normal disparity lower than 1:5 times the primitives’ size are

considered. The tangential disparity has a direct relation with the

depth of the reconstructed 3D primitive: a tangential disparity of

zero means that the point is infinitely far, whereas larger disparities

denote closer points.

Finally, one putative correspondence si?p is chosen using a local

winner–take–all scheme: all putative correspondences pp [ I r (in

the right image) of a primitive pi [ I l (in the left image) are

competing against each other. The confidence in each of them is

set to their similarity with the left primitive pi, and the most similar

correspondence is selected. This similarity measure is explained in

the following section.

Multi–modal stereo similarity. The multi–modal distance

between two primitives is defined as a linear combination of the

modal distances between two primitives. This similarity is akin to

the multi–modal affinity defined in Equation (12) with the addition

of the orientation similarity, that is used here to replace the

geometric constraint:

Figure 5. Illustration of the links extracted for different affinity
thresholds. A detail of the original image (220|280 pixels); B
extracted primitives; C–G. extracted links for values of tA~ (C) 0.1, (D)
0.3, (E) 0.5, (F) 0.7, and (G) 0.9 — using m~5. The blue lines
represent the links, where more saturated lines stand for higher affinity
values.
doi:10.1371/journal.pone.0010663.g005

Figure 6. Illustration of the affinities between 2D primitives. In
this figure, the 2D primitives are linked by coloured lines, where a
brighter colour stands for a stronger affinity. Red stands for collinearity,
green for phase, blue for colour and yellow for optical flow affinity.
doi:10.1371/journal.pone.0010663.g006
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c si?j

� �
~1{

X
m[fh,w,c,f g

wmdm(pi,pj), ð15Þ

where wm is the relative weighting of the modality m [ fh,w,c,f g,
with wm §0 and

P
m[fh,w,c,f g wm~1. The performance of a

winner–take–all stereo matching scheme based on this multi–

modal similarity is evaluated on several stereo sequences in the

results section.

Reconstruction of 3D primitives. We propose to

reconstruct the 3D equivalent of a stereo pair of corresponding

2D primitives, hereafter called 3D primitives (P) as encoded in the

vector:

P~(X ,H,W,C)T ð16Þ

where X is the location in space, H is the 3D orientation of the

edge, W is the phase across this edge, and C holds the local colour

information on both sides of the contour. Figure 7 illustrates the

reconstruction of a 3D primitive from a stereo pair of

corresponding 2D primitives. A 2D primitive defines an image

line, that back–projects as a 3D plane; the intersection between the

two planes back–projected by the corresponding primitives

provide a 3D line, onto which the 3D primitive lies. This line’s

orientation give the 3D primitive’s orientation; its position is given

by the intersection between the line back–projected by the first 2D

primitive’s position, and the plane back–projected by the

corresponding 3D primitive. We refer to [46] for a complete

discussion of the 3D primitives reconstruction.

The reconstruction shown corresponds to a multi–modal

winner–take–all matching (using equation (15)) with a similarity

threshold set to tm~0:5.

Perceptual grouping of 3D primitives. In order to allow

for reasoning in the 3D space, we extend the perceptual

grouping defined for 2D primitives to the reconstructed 3D

primitives.

Two 3D primitives Pi and Pj are linked g3D
i,j , if and only if

their projection in both image planes (respectively pl
i and pl

j on

the left image and pr
i and pr

i on the right) are linked (such that the

two links gl
i,j and gr

i,j both exist), according to the logical

implication

gl
i,j ^ gr

i,j[g3D
i,j : ð17Þ

This definition extends naturally the perceptual groups defined in

the image domain to the 3D space.

Perceptual grouping constraints to improve stereopsis
In this section, we define a semi-global stereo matching function

that is based on the expected consistency between grouping

processes in the left and right image as well as the stereo matching

process. We show that matching can be improved significantly by

using such kind of context information. It also allows for the

establishment of groups in 3D for which additional interpolation

processes can be applied to further improve the precision of

reconstruction.

Because the primitive–based image representation used in this

work samples lines and step–edges, it carries redundant informa-

tion along contours. This redundancy can be used for constraining

the stereo matching problem, leading to the two following

constraints:

(C1) Isolated primitives are likely to be unreliable: As

primitives are extracted redundantly along the contours, con-

versely an isolated primitive is likely to be an artefact and hence

isolated primitives can be neglected.

(C2) Stereo consistency over groups: If a set of primitives

forms a contour in the first image, the correct correspondences of these

primitives in the second image also form a contour (notwithstand-

ing pathological cases).

In our representation, contour information is encoded by the

link network that is the result of the perceptual grouping

mechanism presented earlier; this is illustrated in Figure 8. In

this figure, the orientation of the primitive pi makes it the most

similar (according to Equation (15)) to p2; hence, the stereo

correspondence s2?i holds a higher confidence than, e.g., s2?j .

However, the putative correspondence pj forms a group gs,j , thus

preserving the group relation g1,2 across stereo, whereas pi is not

grouped with ps. Therefore, pj is more likely to be the true stereo

correspondence of p2.

Figure 7. Illustration of a 3D primitive reconstruction from a
stereo pair of 2D primitives. Each 2D primitive defines an image
line, that back–projects as a plane in 3D space. The intersection of these
two 3D planes yield a line in space that defines the 3D primitive’s
orientation. The 3D primitive’s position is given by the intersection
between the back–projections of both 2D primitives’ position. We refer
to [46] for a complete discussion of the 3D primitives reconstruction.
doi:10.1371/journal.pone.0010663.g007

Figure 8. The BSCE criterion. Let p1 be a primitive in the left frame
forming a group with a second primitive p2 . p1 has a stereo
correspondence ps that lie on the epipolar line j1 in the right image.
Both pi and pj in the right image lie on the epipolar line j2 of p2 ; hence
these two primitives are both putative correspondences of p2.
doi:10.1371/journal.pone.0010663.g008
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Basic Stereo Consistency Event (BSCE). Primitives

represent local estimators of image contours; a constellation

of primitives describes a contour as a whole. Such contours

are consistent over stereo, with the notable exception of

occlusion cases. As we have defined the likelihood for two

primitives to describe the same contour as the affinity

between these two primitives, we can rewrite the previous

statement as:

Definition 1 Given two primitives pl
i and pl

j in the left image I l and

their respective correspondences pr
n and pr

p in the right image I r; if pl
i and pl

j

belong to the same group in I l , then pr
n and pr

p should also be part of a group

in I r.

The link conservation between a pair of primitives and the

stereo correspondences thereof is called Basic Stereo Consistency

Event (BSCE) [47]. This condition can then be used to test the

validity of a stereo hypothesis. Consider a primitive pl
i , a stereo

hypothesis

si?n : pl
i?pr

n, ð18Þ

and a 2D primitive pl
j [ N (pl

i) in the neighbourhood of pl
i (as

defined in Equation (14)), such that the two primitives share an

affinity c gi,j

� �
— see Equation (13). For this second primitive, a

stereo correspondence pr
p with a confidence of c sj?p

� �
exists. We

can now define an estimate of how well the stereo hypothesis si?n

reflects the BSCE by:

E(gi,j ,si?n)~
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c sj?p

� �
:c gi,j

� �q
if c gn,p

� �
wtA

{
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c sj?p

� �
:c gi,j

� �q
otherwise

8><
>: : ð19Þ

In other words: the BSCE between a primitive in the first

image and one of its neighbours is high if they share a strong

affinity and if both primitives’ stereo correspondences in the

second image also share a strong affinity; it is low if they share a

strong affinity yet their stereo correspondences in the second

image do not. This naturally extends the concept of group into

the stereo domain.

Neighbourhood consistency confidence. Equation (19)

tells us how a primitive’s stereo correspondence is consistent

with our knowledge of one of its neighbours’ stereo

correspondence. In this section we extend this definition to the

whole primitive’s neighbourhood. If we consider a primitive pl
i

and an associated stereo correspondence si?n, we can integrate

this BSCE confidence over the neighbourhood of the primitive

N (pl
i) — as defined by Equation (14) —

cext½si?n�~
1

#N (pl
i)

X
pl

k
[N (pl

i
)

E(gi,k,si?n), ð20Þ

where #N (pl
i) is the size of the neighbourhood — i.e., the

number of neighbours of pl
1 considered. We call this new

confidence the external confidence in si?n, as opposed to the

internal confidence given by the multi–modal similarity between

the primitives — Equation (15).

Correcting primitives using contextual knowledge
Although primitives are extracted with sub–pixel localisation,

their actual accuracies vary to a large extent depending on local

amounts of noise, blur and texture in the image. The primitives’

position and orientation inaccuracy is amplified by stereo

reconstruction [48] and can lead to large errors thereafter.

Moreover, one fundamental drawback of stereo–based recon-

struction of 3D shapes is that the reconstructed entities’ precision

decreases quickly with distance to the cameras, due to the images’

finite pixel sampling [49,50]. The symbolic quality of primitives,

and groups of primitives, provides us with additional knowledge

that can be used to reduce this uncertainty. Namely, groups of 3D

primitives are reconstructed from pairs of 2D primitives that form

a perceptual group in both stereo images, and as such, according

to the grouping assumption, they describe a smooth and

continuous contour of the scene (except in some pathological

perspectives). This knowledge that the group as a whole should

form a smooth contour can be used to correct the individual 3D

primitives modalities. In this section, we propose a scheme for

correcting 2D– and 3D primitives by locally interpolating the

contours described by groups of primitives.

Triplets of primitives. If we consider three primitives pi, pj

and pk, which belong to the same group, and if pi lies in between

pj and pk — such that the Euclidean distances between (pi,pj) and

(pi,pk) are both smaller than that between (pj ,pk) — then we call

tijk~ pi,pj ,pk

� �
a triplet. Formally,

gi,j ^ gi,k ^ max Exj{xiE,Exk{xiE
� �

vExk{xjE
� �

[tijk: ð21Þ

Triplets of 3D primitives can be defined in the exact same

manner in 3D space: as for the 2D case, a 3D triplet

t3D
ijk ~(Pi,Pj ,Pk) is constituted of a central primitive Pi linked

to two supporting primitives Pj and Pk, such that the central

primitive lies in between the two supporting primitives (i.e., the

Euclidean distances between (Pi,Pj) and (Pi,Pk) are both

smaller than (Pj ,Pk)). Formally,

g3D
i,j ^g3D

i,k ^ max EX j{X iE,EXk{X iE
� �

vEXk{X jE
� �

[t3D
ijk :ð22Þ

These triplets are useful because it is possible to interpolate the

curve between two primitives, and therefore, we can use the curve

interpolated between the two supporting primitives of the triplet

(pj and pk) to correct the central primitive (pi).

Interpolation of modalities. We interpolate the curve

between two (2D or 3D) primitives using Hermite polynomials

[51]. These are convenient in this context as they allow for the

interpolation of a curve from only two data points and the curve

tangents at those points. Also, Hermite splines can be applied to

interpolate 2D or 3D curves indifferently.

Position and orientation: The curve interpolated between

two primitives pj and pk, with positions xj and xk, and local

tangents (defined by the primitives’ orientations) of tj and tk is

defined as all the points x̂xs in the image, with s [ ½0,1� such that

x̂x0~xj and x̂x1~xk and

x̂xs~

s3

s2

s

1

0
BBB@

1
CCCA:H :

xj

xk

tj

tk

0
BBB@

1
CCCA, ð23Þ

where H is the matrix formulation for the Hermite polynomials
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H~

2 {2 1 1

{3 3 {2 {1

0 0 1 0

1 0 0 0

0
BBB@

1
CCCA: ð24Þ

Analogously for the orientation we have

t̂ts~
Lx̂xs

Ls
~

3s2

2s

1

0

0
BBB@

1
CCCA:H :

xj

xk

tj

tk

0
BBB@

1
CCCA: ð25Þ

Note that the exact same formulae are used for interpolating

curves between 3D primitives, but applied to 3 dimensions instead

of 2.

The other modalities are interpolated by assuming that these

change linearly with s between pj and pk:

Phase: The phase modality of the primitive interpolated for

s [ ½0,1� is computed as by

ŵws~arctan
(1{s) sin(wj)zs sin(wk)

(1{s) cos(wj)zs cos(wk)

 !
: ð26Þ

Colour: The colour of the interpolated primitive is computed

using the following equation:

ĉcs~(1{s)cjzsck: ð27Þ

2D Primitive correction. We can then correct the extracted

primitive pi between pj and pk with the interpolated primitive p̂ps.

This is done for each modality m using a weighted mean between

the two values. For position and colour information m [ fx,cg, the

corrected value m is computed by

mi~(1{l)mizlm̂ms,j,k, ð28Þ

where mi is the extracted modality value, m̂ms,j,k is the value

interpolated at xs between pj and pk, and l is the correction rate.

For orientation and phase m [ fh,wg, we have:

mi~arctan
(1{l) sin(mi)zl sin(m̂ms,j,k)

(1{l) cos(mi)zl cos(m̂ms,j,k)

� �
ð29Þ

Note that in the case of Dĥh{hDƒ
p

2
, we need to operate a switch

of the primitive’s interpretation of the orientation as defined in

Ref. [9] before correcting the orientation, colour and phase.

The correction (in Equations 28 and 29) is applied for N
iterations, with a correction factor l~1=N. This is evaluated on

an artificial scene with precise 3D ground truth in the results

section, and the results showed that a small number of iterations

can already considerably improve accuracy.

3D primitive correction. In the 3D case, the primitives also

suffer from the uncertainty that originates from the stereo

matching and reconstruction processes. The 3D primitives’

position in space is corrected to

X i~(1{l)X izlX̂Xs,j,k, ð30Þ

and the orientation to

Hi~
(1{l)HizlĤHs,j,k

E(1{l)HizlĤHs,j,kE
: ð31Þ

This correction is applied iteratively N times, with a correction

factor l~1=N. Also in this case, the results section shows that a

small number of iteration suffice to improve accuracy.

Results

This section contains an evaluation of the different mechanisms

presented above. In order to evaluate the performance of the

different algorithms, we used stereo video sequences generated

from a high resolution images of a urban scenes, with the

associated depth ground truth provided with range scanner.

The range scanner provided us with a single high–resolution

image with associated range information, and therefore each pixel

of the image is given by

Sij~ X ,Y ,Z,r,g,bð Þ, ð32Þ

where (r,g,b) is the pixel’s colour and (x,y,z) is the corresponding

3D point (according to the range scanner). For each image, we

then define ten virtual pairs of stereo cameras with resolution

1024|1024, and used projective geometry to transform the

original image pixels into the virtual cameras’ images, then the

colour of each pixel in the virtual images is linearly interpolated

from the nearest 4 transformed points. The disparity between the

two virtual stereo views is also linearly interpolated at all pixel

positions — see Figure 9.

This offers realistic video sequences with an accurate 3D ground

truth. Some images generated from three different range images

are illustrated in Figure 10A, B and C; the dark blue areas (like the

sky) correspond to where there was no range data available, and

therefore the colour cannot be interpolated. No range data was

available for sequence D, therefore we only have a qualitative

evaluation on this sequence.

Stereo Evaluation
We first assessed the performance of the stereo matching

scheme using each modal distance individually, plus the proposed

multi–modal distance. We used the sequences with ground truth in

Figure 10A, B, C to evaluate quantitatively the efficiency of each

measure for stereo matching. We considered that a match was

correct if its disparity error with the ground truth was smaller than

Figure 9. Illustration of how a sequence is generated from
colour range images. The images show the first t~1 left and right
images, the left disparity image, and the last left image (tzdt~10).
doi:10.1371/journal.pone.0010663.g009
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the 2D primitives’ size — this ensures that no erroneous match is

considered as correct.

Figure 11 shows the histogram distributions of the modal

distances between primitive pairs satisfying the epipolar constraint

— for all images in sequences A, B and C. All histograms show a

separation between the distributions of correct (black) and false

(white) correspondences. In the phase (Figure 11 top–right) and

colour (Figure 11 bottom–left) histograms, the correct correspon-

dences show a sharp peak at a modal distance of zero, whereas the

false ones display an even distribution along all distances between

½0,1�. In the orientation histogram (Figure 11 top–left), the large

peak at zero distance for false correspondences is explainable by

the presence of parallel structures in the image. Consequently, if

one draws a horizontal line in the image, this line would cross

parallel contours of very similar local orientation. The optical flow

distribution shown in Figure 11 bottom–right has a peaked

distribution centred at a distance of 0.1 for the correct

correspondences, with a long tail until 0.6. The fact that the

distribution peaks at 0.1 is explained by the projective difference in

the optical flow between the two stereo images (the flow is likely to

be similar, but not equal); this long tail is likely to be a consequence

of the noisiness of optical flow data. The false correspondences also

show a broad distribution around a modal distance of 0.3; the fact

that the distribution is not centred at 0.5 is a consequence of

statistical distributions of edges in natural images: horizontal and

vertical edges are more likely, and therefore horizontal and vertical

flow vectors are also more likely. In spite of this large overlap,

optical flow distance is still better than chance for identifying

correct stereo correspondences from erroneous ones — see ROC

analysis in Fig. 12B: the optic flow curve is above the diagonal line

that indicates chance performance in ROC curves. Figure 12A

shows the multi–modal similarity histogram for correct and

erroneous stereo matches. There is little overlap between the

two distributions, showing that the multi–modal similarity is a

good criterion for stereo matching.

In order to evaluate the performance of each distance measure for

the task of identifying correct stereo matches from erroneous ones, we

drew the Receiver Operating Characteristic (ROC) curves for each of

them. If we consider a set of putative stereo correspondences,

provided that we have a distance measure for all of them and that we

know from the disparity ground truth which ones are correct, it is

possible to compute the ratios of correct and erroneous pairs of

Figure 10. The four sequences on which we tested our approach. The top row shows one image from each sequence, and the bottom row
shows the groups created.
doi:10.1371/journal.pone.0010663.g010

Figure 11. Histograms of the modal distances. Each plot shows
the histograms of one modal distance (0 for identity and 1 for dissimilar
items), for correct (black bars) and false (white bars) correspondences.
The modal distances between putative stereo pairs are binned along
the horizontal axis, and the vertical axis shows the frequency of
occurrence of this value, between 0 and 1 (such that the cumulated
heights of black and white bars are both 1). The histograms are
computed across all three sequences in Figure 10 A, B and C.
doi:10.1371/journal.pone.0010663.g011
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primitives with a distance below threshold, respectively called true and

false positive rates. A ROC curve records the true positive rates against

the false positive rates obtained when considering one distance

measure for a sample of threshold values ranging from 0 to 1.

Therefore, a random measurement would generate a nearly diagonal

ROC curve, whereas a measurement that is very significant for the

task would have a large area below its ROC curve. In Figure 12B,

such ROC curves show the performance of the stereo matching.

Each of the curves shows the performance when using each modal

similarity, or the multi–modal similarity proposed in Equation (15). In

this figure, we can see that the colour modality is a particularly strong

discriminant for stereopsis. This is explained by the fact that the hue

and saturation are sampled on each side of the edge, leading to a 4–

dimensional modality (if we neglect the V component and only keep

the H and S), whereas phase and orientation are only 1–dimensional

and optical flow is 2–dimensional (albeit the aperture problem

reduces it to one effective dimension: the normal flow). Moreover,

those stereo pairs of images were interpolated from a single high–

resolution image with range ground truth; thus, pixel colour is

consistency is unaffected by illumination and therefore artificially

high between left and right images. On the other hand the poor

performance of the optic flow modality could be explained by the

relative simplicity of the motion in this scene: a pure forward

translation of the camera, with no moving objects. Therefore, we

would expect the performance of individual modalities to vary

depending on the scenario, and the robustness of the multi–modal

constraint could be further enhanced by a contextual weighting.

Nevertheless, in a variety of scenarios the use of a static weighting

proved robust enough to obtain reliable stereopsis. These results show

that (1) the similarity measures in all modalities are efficient (i.e.,

better than chance) indicators for stereo matching, (2) the multi–

modal similarity yields a better classification.

Figure 12. Evaluation of the multi–modal stereo. A Histogram of the multi–modal similarities between correct (black bars) and false (white
bars) potential correspondences. B ROC curves for the different modalities. These results have been collected over 10 frames of the sequences
Figure 10 A, B and C.
doi:10.1371/journal.pone.0010663.g012

Figure 13. Evaluation of the external confidence. A Histogram of the external confidence rating for correct (black bars) and false (white bars)
correspondences. B Each curve stands for a the application of a different threshold over the external confidence, prior to the ROC analysis. These
curves represent the statistics over 10 frames of the three sequences with ground truth — see Figure 10 A, B and C.
doi:10.1371/journal.pone.0010663.g013
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External Confidence Threshold
In a second set of experiments, we evaluated the effect of setting

a minimal threshold on the external confidence. The external

confidence threshold was always applied in conjunction with a

sensible threshold on the multi–modal similarity of tm~0:8.

In Figure 13A, one can see that the correct (black) correspon-

dences have mostly positive external confidences, while incorrect

(white) ones have mainly negative values (large peak at {0:9). The

small peak of correct correspondences for negative external

confidence (near {0:9) is due to the few cases where most

primitives on a contour have an erroneous correspondence, and

therefore the few correct ones are strongly contradicted. The large

values of erroneous correspondences with external confidences of

1 comes from repetitive structures in the image, that require more

global considerations for disambiguation. Applying a threshold on

the external confidence will remove stereo hypotheses that are

inconsistent with their neighbourhood, and thus reduce the

ambiguity of the stereo matching. Note that selecting a threshold

of zero implies the removal of all the isolated primitives (see

constraint C1) as an isolated primitive has an external confidence

of zero by definition.

Figure 13B shows ROC curves of the performance for varying

thresholds on the multi–modal similarity. Each curve shows the

performance for a different threshold (with threshold of

{0:6,{0:3,0,z0:3, and without threshold) applied to the

external confidence prior to the ROC analysis. We can see from

these results that applying a bias on the decision based on the

external confidence is improving significantly the accuracy of the

decision process. Depending on the type of selection process

desired — very selective and reliable, or more lax, but yielding a

denser set of correspondences — different thresholds can be

chosen. The best overall improvement seems to be reached for a

threshold of {0:6 over the external confidence (with a negligible

difference in performance between {0:3 and {0:6). However, in

the general case where a high reliability is required of the stereo

matches, a small positive threshold of 0:1 is preferred (meaning

discarding all primitives which are not part of a group) is preferred.

Note that when a threshold is applied to the external confidence

prior to the ROC analysis, the resulting curve does not reach the

(1,1) point of the graph. This is normal as the threshold already

removes some stereo hypotheses even before the multi–modal

confidence is considered.

Table 1 summarises the performance of the stereo matching

scheme, with and without external confidence threshold (because

the external confidence is within ½{1,1�, a threshold of {1 is the

same as no threshold at all), on all three sequences with ground

truth, showing a consistent improvement in all scenes, although

the actual magnitude of the improvement varies. Sequence A, for

example, contains a lot of repetitive, parallel structures which the

external confidence cannot help disambiguating.

Figure 14 illustrates the effect qualitatively for the video

sequence from Figure 10D. Figure 14a) shows the 3D primitives

reconstructed with a threshold on external confidence of

te~{0:1. When comparing Figures 14A and 14B we can see

that a large number of outliers has been discarded from the

reconstructed 3D primitives, leading to a cleaner description of the

scene.

Interpolation
We evaluated the performance of the interpolation scheme, on

two simple artificial sequences illustrated in Figure 15. In the case

of 3D–interpolation we also evaluated the interpolation effect on

the reconstructed 3D representation qualitatively. The interpola-

tion scheme was applied for N~10 iterations, with a correction

factor of l~0:1.

2D interpolation Results. The results for localisation,

orientation and phase over 10 iterations of the correction

process are shown in Figure 16, for the triangle (full line) and

the circle (dashed line) scenarios. The horizontal axis shows the

number of iterations of the correction process and the vertical axis

the mean error of the 2D primitives. Note that the error is

measured in pixels for the localisation and in radians for the

orientation and the phase.

This sub–pixel accuracy is naturally lower for the circle scene,

which is due to the contour’s curvature. As primitives are local line

descriptors, they can describe curved contours but they assume

Table 1. Performance of the stereopsis with and without
external confidence threshold.

sequence tm te correct c false f
c{f

czf

A 0.8 21.0 3633 498 0.76

A 0.8 20.1 3582 456 0.77

B 0.8 21.0 2205 1178 0.30

B 0.8 20.1 1915 447 0.62

C 0.8 21.0 906 276 0.53

C 0.8 20.1 804 167 0.66

tm [ ½0,1� is the multi–modal similarity threshold for stereo matching;
te [ ½{1,z1� is the external confidence threshold; c and f are the total number
of true and false correspondences (respectively) selected by these thresholds.
doi:10.1371/journal.pone.0010663.t001

Figure 14. Qualitative example of the effect of the external
confidence threshold. A primitives reconstructed from the sequence
in Figure 10D, without threshold on external confidence (tm~0:8,
te~{1:0). B primitives reconstructed from the same sequence with a
threshold on external confidence (tm~0:8, te~0:1).
doi:10.1371/journal.pone.0010663.g014

Figure 15. Illustration of the primitives extracted from two
simple artificial sequences, featuring a triangle (left) and a
circle (right). In both scenarios, the object (triangle or circle) is facing
the cameras, at a depth of 100 units, the object has a radius of 10 units,
and the baseline between the two cameras is 10 units. Both images
shown here are from the last camera.
doi:10.1371/journal.pone.0010663.g015
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low local curvature. Hence, as the sub–pixel accuracy is assuming

this linear model, it is performing better with purely linear

structures. Nonetheless, note that the accuracy is extremely high in

both cases: less than one tenth of a pixel for the localisation and

and less than one hundredth of a radian for the orientation — i.e.,

less than 0:6 degrees.

Moreover, we note that interpolation leads to mixed results

depending on the modality: we see a distinct improvement of the

localisation for the triangle scene, but not for the circle scene. This

is likely to be due to the use of Hermite interpolation, in two

respects: first, Hermite interpolation makes use of the tangents’

orientation in addition to their position; hence, the interpolated

curve is sensitive to errors in orientation. Second, even if the

Hermite polynomials are an efficient model for describing general

curves, they do not allow a perfect interpolation of an arc; thus,

interpolation at high curvature locations lead to a loss in precision.

Nonetheless, the accuracy of the interpolated primitive itself is

always better than the original (reconstructed by stereo).

Concerning orientation, we see a clear improvement of *0:003
radians for both objects (*50% and *30% for the triangle and

circle). Phase shows a clear (although smaller) improvement in

both cases; the triangle scenario sees an improvement of *0:015
(*25%), whereas the circle scenario sees an improvement of

*0:01 (*11%). The effect of phase correction is illustrated in

Figure 17. This figure shows a detail of the primitives extracted on

the circle scene; the phase is illustrated on the primitives by the

green arrow, which orientation indicates the phase. In this case,

horizontal indicates a full contrast edge structure, and vertical a

full contrast line. Figure 17C and D show the phase before and

after correction, where the dotted lines show the mean phase

across the whole circle. Before correction, the phase of the central

primitive differs significantly from the correct one, and it is closer

to the dotted line after correction.

3D primitives interpolation. This scheme was evaluated on

the same triangle sequence as above (shown in Figure 15) and

resulted in a reduction of the localisation error by *30%; the

orientation error was reduced by *16% (see Table 2). When

applying the same scheme to the circle scenario, the localisation

error was reduced by *20%; orientation error was reduced also

by *20% (see Table 3 and Figure 18). Figure 19 shows the effect

of this smoothing on selected details in an indoor scene.

Discussion

In this paper, we presented several local operations on the visual

primitives presented in Ref. [9], which produce a robust

representation of visual scenes, some of them making use of the

(still locally constrained) context.

First, we presented a simple algorithm to group primitives into

contours. Contours were defined implicitly in terms of the pairwise

relations between proximate 2D primitives. Note that an explicit

description of the groups could easily be extracted from such an

implicit definition using a variety of techniques, including:

normalised [52] or average cuts [53], affinity normalisation [15],

dynamic programming [54], probabilistic chaining [55], etc.

Second, we proposed to use the multi–modal similarity between

2D primitives to perform stereo matching between pairs of images.

The stereo algorithm we used is purely local and therefore does

not make use of global constraints (e.g., ordering constraint [56],

figural continuity [57], etc.), or optimisation (e.g., dynamic

programming [58], graph operations like maximal clique [59],

etc.). Such global optimisations generally allow to improve

significantly the performance of local stereo matching schemes,

and therefore could be applied to this system to further improve

the quality of stereo matching.

Third, we proposed a scheme integrating contextual informa-

tion combining perceptual grouping and stereopsis to improve the

reliability of the latter. The external confidence defined here is

comparable to averaging over a local neighbourhood of a disparity

gradient constraint along contours [60]. Also, in a similar way,

Ohta and Kanade [56] proposed to apply inter–scanline

consistency rules in addition to a more classical intra–scanline

ordering constraint. Departing from those pixel–based constraints,

Figure 16. Correction of the 2D primitives using interpolation.
Accuracy of the 2D primitives’ localisation (A), orientation (B) and phase
(C) after several iterations of the correction process, for the triangle (full
line) and circle (dashed line) scenarios. The horizontal axis shows the
number of iterations of the correction process and the vertical axis
shows the error for A in pixels, and for B and C in radians.
doi:10.1371/journal.pone.0010663.g016

Figure 17. Illustration of the effect of phase correction in 2D. A
the original image; B the extracted primitives; C detail of the primitives,
the green arrows show the extracted phase, the dotted lines show the
mean phase over the whole circle; D detail of the primitives after
correction: the central primitive’s phase is now closer to the dotted line.
doi:10.1371/journal.pone.0010663.g017

Table 2. Effect of the correction process on the localisation
and orientation in space of the primitives reconstructed from
the triangle scenario.

localisation error orientation error

mean variance mean variance

before 0.03524 0.00392 0.01712 0.00082

after 10 iterations 0.02426 0.00221 0.01434 0.00056

doi:10.1371/journal.pone.0010663.t002

Table 3. Effect of the correction process on the localisation
and orientation in space of the primitives reconstructed from
the circle scenario.

localisation error orientation error

mean variance mean variance

before 0.08653 0.01188 0.02476 0.00071

after 10 iterations 0.06868 0.00882 0.01955 0.00046

doi:10.1371/journal.pone.0010663.t003
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the definition of the Basic Stereo Consistency Event (BSCE) allows

to specify semantically which neighbours have positive and

negative contributions to the confidence. It was shown that it

could improve significantly the reliability of stereo matching.

Moreover, we showed that the same grouping relation can be

used to interpolate contours between pairs of linked primitives.

This was then used to correct primitives with the contour as

interpolated from its neighbours. In 2D, we obtained a reduction

by more than 30% of the orientation error, and more than 10%

for the phase. When interpolating 3D primitives, we additionally

found that the localisation error was reduced by more than 20%,

and the orientation error by more than 15%. Therefore, this

interpolation step proved to be a robust manner to improve the

representation accuracy, both in 2D and 3D. Because the scheme

is local, there is no a priori assumption that the whole contours

comply with a certain mathematical description: we only assume

that the contour is smooth between two proximate primitives, and

model this using Hermite interpolation.

Figure 18. Correction of 3D primitives. Error of the A localisation
and B orientation of the reconstructed 3D primitives after several
iterations of the correction process. Solid lines shows the errors for the
triangle scenario and dashed line for the circle scenario. The horizontal
axis shows the number of iterations of the correction process and the
vertical axis shows the error in A units (in the 3D space, arbitrary in an
artificial scenario) and B radians.
doi:10.1371/journal.pone.0010663.g018

Figure 19. Illustration of the effect of the correction of 3D primitives using interpolation. The figure shows the reconstructed primitives
before and after 10 rounds of correction, for details of an object.
doi:10.1371/journal.pone.0010663.g019
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Finally, we showed that using such mutual feedback between

mid–level, local processes allow to disambiguate them without

need for additional contextual knowledge. Thereby, we provide a

reliable 3D representation of the shapes in the scene that can then

be used for higher level visual operations, where contextual

knowledge may be available. This framework was used successfully

to address a variety of robot vision tasks: e.g., grasping [13], ego–

motion estimation [61], and learning of objects’ shapes [12].
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