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Abstract—Meaningful Non-Verbal Communication (NVC) sig-
nals can be recognised by facial deformations based on video
tracking. However, the geometric features previously used contain
a significant amount of redundant or irrelevant information. A
feature selection method is described for selecting a subset of
features that improves performance and allows for the identi-
fication and visualisation of facial areas involved in NVC. The
feature selection is based on a sequential backward elimination of
features to find a effective subset of components. This results in
a significant improvement in recognition performance, as well as
providing evidence that brow lowering is involved in questioning
sentences. The improvement in performance is a step towards a
more practical automatic system and the facial areas identified
provide some insight into human behaviour.

I. INTRODUCTION

Non-verbal communication signals are essential to under-
standing in almost all common social situations. They consist
in an ensemble of wordless cues, both visual and audible, that
convey information about the meaning expressed. Automatic
systems are beginning to address the recognition of Non-
Verbal Communication (NVC) and emotion [1]. However,
the difficulty to choose, detect and track accurately facial
features often leads to the generation of features that contain
irrelevant or redundant information, which may compromise
the performance of system. A feature selection approach can
address this problem, leading to both improved performance
and allowing to identify the facial areas used in the communi-
cation or emotion act [2]. Furthermore, understanding which
facial areas are useful for automatic recognition may provide
insight into human perception and behaviour. This paper will
propose a novel feature selection approach for automatic
NVC recognition based on sequential backward selection of
facial shape features [3]. Moreover, a novel method for the
visualization of relevant facial areas is described.

For the evaluation of our method, we selected the TwoTalk
corpus [4] because it features spontaneous human NVC. The
corpus comprises of manually selected clips of casual dyadic
conversation with minimal experimental constraints (see Fig-
ure 1). The annotation of the video clips was conducted by
paid and volunteer Internet workers from three distinct cul-
tures. Specifically, humans NVC during natural conversation

(a) thinking (b) understanding

(c) agreeing (d) questioning

Fig. 1. Some example frames taken from the TwoTalk corpus, captured
from clips that were strongly labelled (according to British annotators) as,
respectively: (a) thinking, (b) understanding, (c) agreeing and (d) questioning.
Note that NVCs are dynamics and therefore the actual clip features convey
more information than still images.

were manually annotated for the following categories: think-
ing, understanding, agreeing and questioning—see Figure 1
for an illustration. This corpus was used for training and
evaluating an automatic recognition system.

The proposed system is based on the system proposed by
Sheerman-Chase et al. [5] in which facial shape features were
based on geometric relations between tracked facial points.
The system uses linear predictor tracking [6] to track a selected
set of facial locations, and makes use of geometric relations
between points to encode facial shape information. Feature se-
lection is then used to select the subset of feature components
that are relevant to a specific NVC. Because the annotation in
the TwoTalk corpus is gathered from three distinct cultural
groups, feature selection is separately computed for each
culture and for each NVC category. After feature selection,
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Fig. 2. Points on the face were tracked to encode the face position. The
points were manual assigned to the flexible or rigid set. Flexible points are
shown in green. Rigid points are shown in cyan. Humans have relatively little
ability to move these rigid facial points relative to the skull.

the contribution of each feature component is also evaluated,
resulting in a set of feature relevance weights for each NVC
signal. These feature weights can be visualised to show the
involvement of facial areas in the expression of NVC in an
intuitive manner. This is based on segmenting a face using
Voronoi tessellation around the position of trackers. Voronoi
tessellation segments an image into cells based around seed
positions; each point in the space is assigned to a cell based
on the nearest seed position. This visualisation can either be
used to check if the relevant facial areas conform to our
expectation, or provide an indication as to which areas are
used by the automatic system. This in turn may provide clues
as to human NVC perception, although facial areas used by
human perception may differ from those used by an automatic
approach.

The resulting feature component subsets are shown to be
more effective than the original feature vector. Moreover, the
visualisation of NVC-selected facial features yields interesting
insights in NVC perception: for example, the visualisation of
thinking NVC confirms out expectation that it is related to
gaze aversion. Also, questioning NVC appears to be related to
brow movements, which is an association that is little reported
outside of the sign language community.

The next section provides an overview of relevant existing
research. Section II reviews the existing research. The dataset
is described in Section III. Section IV describes the methodol-
ogy used for tracking and feature selection. Section V contains
experimental results and discussion. Conclusions are drawn in
Section VII.

II. BACKGROUND

There are many generic approaches to feature selection (see
[7] for a review), which vary in performance, computational
cost and restrictions on the type of input data. A technique can
be either an embedded, filter or wrapper method. Embedded

T1

T2

T3

T1 T3

T1 T2

T2 T3

Fig. 3. Geometric features were generated, based on distances between pairs
of trackers, that encode local deformation information.

feature selection methods, such as a boosting classifier, can be
used to weight a set of features based on relevance or isolate
a suitable subset of components. This subset can then be used
by a second, more sophisticated classifier. This approach was
used by Valstar [8] to select shape features by Gentleboost, and
Petridis and Pantic [9] used Adaboost to select relevant audio
and visual features. However, performing feature selection
in this way assumes that the optimal set of features for
both methods is similar—which is not necessarily the case.
Yang et al. [2] propose a feature selection method based on
rough set theory on audio visual features. This avoids the
discretisation of feature values required by some classifiers,
such as Adaboost, and the associated loss of information.

Filter based feature selection appears to have been largely
avoided in the context of emotion and NVC recognition, prob-
ably due to the relatively small number of feature components
in the original feature vector (usually thousands of feature
components at most) and the often significant importance of
feature interaction for emotion and NVC.

Wrapper based methods include randomised feature se-
lection approaches such as simulated annealing and genetic
approaches, but these have not been popular in facial analysis.
Deterministic wrapper based approaches have been applied
to emotion recognition: Grimm [10] used Sequential Forward
Selection (SFS) to isolate relevant audio features. This method
begins with an empty set and incrementally adds features that
produce the greatest performance increase, in a greedy fashion.
An alternative, called Sequential Backward Elimination (SBE),
is to start with a full set of features and incrementally eliminate
features that result in the best performance [3]. The SBE
approach was used by el Kaliouby and Robinson [11] to find
the most relevant geometric features. The method described in
this paper is of this type.

There are several existing papers that identify which features
have been selected for emotion or NVC recognition, but it
is less common to attempt to visualise which features have
been selected. If features are shown, they are often visualised
individually (e.g. [2]), which can make comprehension of the
overall distribution difficult. In experimental psychology, gaze
patterns in perception have been visualised by Jack et al. [12].



In a similar way, the present work provides a data-driven
visualisation of the relative importance of facial features for
NVC recognition.

This study describes a visualisation that is as intuitive to
interpret as a density map of visual attention and is somewhat
comparable to Jack et al. .

III. DATASET DESCRIPTION

This paper makes use of the LILiR TwoTalk dataset [4].
The TwoTalk corpus attempts to minimise experimenter in-
terference whilst recording usable data of spontaneous dyadic
conversations. Eight participants of approximately equal social
seniority were recorded in a laboratory environment in one of
four conversation pairs. Each participant was asked to come
to the lab, be seated across a table and converse for at least 12
minutes. A seated position reduces the amount of body and
head pose changes and makes further analysis easier. No other
instructions were provided to the participants (e.g. no limit
on the topic of conversation). The conversation was recorded
by two progressive scan PAL cameras at 25 fps, positioned
behind and above the shoulder of each participant, and a single
microphone placed on the table. The corpus contains 6 males
and 2 females from various backgrounds, all of whom were
English speakers (some native and some non-native). 527 clips
were manually extracted from the videos which were thought
to contain interesting NVC signals. The length of the clips
ranged from length l = 0.6 to 10 seconds (l = 4.2s, σ = 2.5s).
The dataset contains a range of spontaneous emotions, lip
movements, head pose changes and occasional hand gestures
that occasionally occlude the face. The colour images are
converted to grey-scale using the ITU-R 601-2 luma transform.

The corpus has NVC annotation categories of thinking,
understanding, agreeing and questioning. These were selected
due to their common occurrence in natural conversation. The
annotators were based in three cultural groups by their IP
address. The three cultures that received a significant quantity
of annotation were Great Britain (GBR), India (IND) and
Kenya (KEN).

IV. FEATURE EXTRACTION AND FEATURE SELECTION

A. Tracking and Feature Generation

Features were generated by tracking a set of hand-picked
facial locations over time, and the facial shape was encoded
by calculating the distance between any two pairs of these
points. Tracking was performed by linear predictor tracking
[6]. Because the tracker requires multiple frames to be an-
notated for training, κ = 48 points {Ti}i∈[1..κ] that could
be consistently located were selected for use and manually
marked (see Figure 2). The system uses a single class of
geometric features (distances between a pair of trackers) and
exhaustively computes the frame features

F = {‖Ti − Tj‖}i=[1..κ],j>i (1)

for every possible pair of trackers, in a similar way to Valstar
et al. [8] (see Figure 3). To remove the effect of different
face shapes, each feature was zero centred and whitened on

a per subject basis. Therefore, for κ trackers, each frame is
described by feature vector F, the size of which is given by the
triangular number J = κ(κ+1)

2 (which is the number of unique
distance pairs between κ points). These features are not robust
to scale changes but subsets of feature components are robust
to head rotation, specifically in cases where the head rotation
does not change the apparent distance of facial points.

Each clip contains the frame features from multiple video
frames and these are combined to provide a single clip feature
vector. The relevant NVC information is likely to be present in
only a subset of the frames and features. Ideally, clip features
would encode relevant temporal information of the important
frame features. A simple approach is used here, which takes
the mean and variance of each feature frame to produce a clip
feature C (in a similar fashion to [9]) C ∈ RJ . For a clip that
extends from frame a to b, the clip features are generated as
follows:

Ci =
1

b− a

b∑
f=a

Ffi , i ∈ [1..J ] (2)

Ci+J =
1

b− a

b∑
f=a

(Ffi −Ci)
2 (3)

The training dataset is composed of M clip features and
corresponding annotations S = {(Ck, yk)}k=1..M

B. Feature Selection Methodology

This section describes the method in detail and the resulting
performance impact. The approach used is a greedy SBE
of the features [3]. A backward search (SBE) beings with
a set containing every feature component and sequentially
removes components from this set to maximise performance.
Forward search involves beginning with an empty set and
sequentially adding feature components to the set, again to
maximise performance. Backward searching was thought to be
preferable to forward searching because features interactions
can be found and exploited. Forward search, particularly in the
first few iterations, adds features without the benefit of other
complementary features. In contrast, a backward search allows
irrelevant features to be eliminated while retaining features that
contain complementary information.

In this work, we apply feature selection within a person
independent, cross validation framework. There are eight folds
in cross validation, resulting in eight different partitioning of
seen and unseen data sets. Feature selection is applied to the
seen data of a specific cross validation fold, to determine a
relevant feature subset. Support Vector Regression (SVR) is
then applied to the feature subset to produce a model suitable
for prediction.

The procedure for SBE is shown in Algorithm 1. The search
begins with a current set α = {1...2|F|} which includes all
feature components. The components to be removed from α
at each iteration is then determined. The current set α is then
updated and the process continues until the current set α is
empty. For the large number of components, it is too time



Algorithm 1 Algorithm SelectFeature, performing a single
step of the feature selection algorithm. The regressor can be
any suitable method, but in this study ν-SVR is used.
Require: A feature set α 6= ∅,

a dataset S = {(Fk, yk)}k∈[1..M ] =
⋃N
j=1 sj ,

an elimination rate η > 0, and a fitting function fit().
Ensure: A reduced feature set α̃ ⊂ α.

for i ∈ α do {Assess all features in turn}
β = α \ i
for j ∈ [1..N ] do {Cross validation performance}

Regression on fold sj using features β: φ = fit(sj ,β)
pi,j = corr(φ(Fk), yk), (Fk, yk) ∈ S \ sj

end for
pi =

1
N

∑
j pi,j{Total error across all folds}

end for
α̃ = α
for 1..η do {removes the η worst features}
i∗ = argmaxi∈α̃ pi
α̃ = α̃ \ i∗

end for

consuming to remove components at a rate of 1 per iteration.
To accelerate the process, multiple feature components are
removed nearer the start of the SBE process. As the number
of components in the current set approaches zero, the rate of
feature elimination returns to the standard 1 feature component
per iteration. This produces a significant speed increase, but
risks the removal of non-optimal components and this may
result in a sub-optimal final feature set. The number of feature
components removed from the current feature set at each
iteration is denoted η. This depends on the number of feature
components ω in the current set α as follows:

η =


200 if ω > 1000

100 if 400 < ω ≤ 1000

1 otherwise.
(4)

These thresholds were based on an intuitive expectation
that only a small subset of features are required for accurate
recognition.

To find an appropriate subset of features for removal from
the current feature set, the contribution of each feature com-
ponent needs to be assessed. An overview of this process
is shown in Algorithm 1. Each feature component in the
current feature set α is selected as the test component and
the performance impact of the removal of the component is
evaluated. The features are then prioritised, with the feature
components resulting in the lowest performance preferred for
removal. This process becomes progressively faster as the
current feature set becomes smaller.

The training data S is split into N cross validation folds
{sj}j∈[1..N ], such that S =

⋃N
j=1 sj . These “feature selection”

folds are distinct from the “system” cross validation folds
discussed earlier, so that each fold contains data from multiple
human subjects.

Algorithm 2 Algorithm FindBestFeatureSet, calling Algo-
rithm 1 iteratively to perform a greedy search of the best
performing subset of features on the training data.
Require: A feature set α 6= ∅,

a dataset S = {(Fk, yk)}k∈[1..M ] =
⋃N
j=1 sj ,

an elimination rate η > 0, and a fitting function fit().
Ensure: Selects best subset of features αseen.
r = 0
Initializes to the full feature set: α0 = α
while αr 6= ∅ do
r = r + 1
Call Algorithm 1: αr = SelectFeature(αr−1,S, η)
for j ∈ [1..N ] do {Cross validation performance}

Regression on sj using αr: φ = fit(sj ,αr)
pi,j = corr(φ(Fk), yk), (Fk, yk) ∈ S \ sj

end for
pseen
r = 1

N

∑
j pr,j {Total error across all folds}

end while
Select peak performance: αseen = argmaxr p

seen
r

Algorithm 2 calls Algorithm 1 iteratively, producing a
series of sets {αr}r that correspond to each stage in the
progressive removal of features, and can be assessed sepa-
rately on unseen data. The expectation is for performance to
increase as poor features are removed. As the SBE process
is nearing termination, some features that are critical to NVC
regression are removed and the performance sharply declines.
The performance pseen

r of the feature subset αr at each stage
is evaluated and retained for later analysis.

Because this process results in multiple sets which are used
to create multiple NVC models, it is not obvious which feature
set to use and how many feature components are optimal.
Simply selecting the peak performance when evaluating fea-
ture sets on unseen data violates the separation of seen and
unseen data. For simplicity, this method uses the feature set
αunseen, having the peak performance for unseen test data to
determine the number of feature components to be used. It
is likely that different NVC signals require a specific set of
geometric features to be effective. Therefore, feature selection
is computed for a specific NVC category and using a specific
culture’s annotation data. The processing of test set β has
been parallelised in this implementation, resulting in a speed
increase.

C. Support Vector Regression

Support Vector Regression (SVR) is a supervised learning
technique that takes a problem that cannot be solved by linear
regression in the input space, and learns a non-linear mapping
into a higher dimensional space in which the problem is
suitable for linear regression [13]. In this system, the ν-SVR
variant is used [14] with a Radial Basis Function (RBF) kernel.
SVR has been shown to be an effective regressor for emotion
recognition [15], and it is therefore expected to be effective in
the broader area of NVC detection.



V. EXPERIMENTAL RESULTS

A typical plot of performance against the number of feature
components in the subset is shown in Figure 4. As expected,
the performance of predicting unseen test data increases at
first as features are removed, until performance suffers a
sharp decline. The far left starting point of the lower curve
corresponds to the performance of the system discussed in
the previous chapter (i.e. without feature selection). In this
example, feature selection results in a significant increase
in performance. Feature sets containing between 10 to 275
features deliver the highest performance, with the peak perfor-
mance requiring only 10 features. However, it is unlikely that
this feature set will be effective for regressing NVCs other than
thinking. This can be a disadvantage because the SBE method
is NVC category specific and a great deal of computation is
required to retrain the system for a different NVC signal.

The feature selection curves are relatively linear until ap-
proximately 400 features remain. This corresponds to the
threshold in Equation 4. The change in the curve behaviour
at this point suggests that a different set of thresholds might
result in a higher peak, although this was not investigated.

This pattern is repeated for most other NVC categories
and in different cultures. While almost every test fold subject
benefits from the feature selection process, not all system cross
validation folds yield the same level of performance increase.
The left plot of Figure 4 shows an instance in which feature
selection was not effective. The performance is low before
feature selection begins, which might indicate a problem with
the approach in recognising this subject performing question
NVC signals. The centre and right curves show typical feature
selection behaviour in a different cultures and NVCs. A typical
gradual improvement in performance can be seen, as features
are removed before a sharp decline.

The optimal number of features is not known before feature
selection begins. The peak of unseen performance is 10 fea-
tures, while the peak for seen performance is at approximately
125 features (see Figure 4). A simple approach to determine
the optimal number of features is to use the peak performance
of unseen data. The performance for this method is shown
in Table I. However, this method violates the separation
of training and unseen test data. The table also shows the
performance with the ideal termination of feature selection.
This table implies that if terminated at an appropriate point,
SBE can result in a significant performance gain.

The number of features for termination of the feature
selection process should be determined based on seen training
data. This restriction represents a system which is less reliant
on manual tuning of parameters. The peak training data
performance can be used to determine when to terminate the
feature selection process. This is likely to select a non-optimal
number of features, but this approach respects seen and unseen
data separation. The results may be compared to the regression
system in Sheerman-Chase et al. [5]. The performance of this
method is shown in the highlighted column of Table I. Feature
selection produces a large increase in performance over the

TABLE I
COMPARISON OF VARIOUS APPROACHES OF TERMINATION OF THE
FEATURE SELECTION PROCESS, ALONG WITH THE PERFORMANCE

WITHOUT FEATURE SELECTION FROM SHEERMAN-CHASE ET AL. . [5]

Area NVC Terminate Terminate Without
Category By Unseen By Seen Feature

Peak Peak Selection[5]
GBR Agree 0.588 0.523 0.340
GBR Question 0.453 0.385 0.188
GBR Thinking 0.617 0.556 0.440
GBR Understand 0.640 0.605 0.389
IND Agree 0.637 0.600 0.400
IND Question 0.534 0.458 0.236
IND Thinking 0.638 0.588 0.363
IND Understand 0.547 0.498 0.257
KEN Agree 0.648 0.604 0.462
KEN Question 0.453 0.358 0.162
KEN Thinking 0.654 0.600 0.363
KEN Understand 0.636 0.595 0.431
All Average 0.586 0.531 0.336

existing method. Therefore, feature selection is beneficial for
geometric features because it removes irrelevant features and
results in a feature subset that is more suited for the specific
NVC. The next section describes the visualisation of these
component subsets.

VI. ANALYSIS: VISUALISING SELECTED FEATURE
SUBSETS

Each feature component in the feature selection subset
corresponds to a pair of trackers. This provides information
about which facial regions are used by the regressor for NVC
recognition. It is useful to know which areas of the face
are involved in NVC expression: to assist understanding of
human behaviour and to develop effective feature extraction
methods. In order to visualise areas of the face relevant to
NVC expression, each feature component of the geometric
feature is assigned a weight based on the contribution that
the feature component makes to the performance. As feature
component i is removed at SBE iteration r, an increase or in
performance from pr−1 to pr where (pr > pr−1) indicates
the component was detrimental and is ignored. Conversely, if
the performance pr drops when a component i is removed,
this indicates the component was relevant.

or =

{
|pr − pr−1| if pr − pr−1 > 0,
0 otherwise.

(5)

The modulus of the performance drop or is added to the
weight of the two trackers wa

r and wb
r that correspond to the

component i.

wa
r−1 = wa

r + or (6)

wb
r−1 = wb

r + or (7)
(8)

After the SBE process is run to completion, the tracker
weights wx

0 are normalised to form normalised weight ŵx

which makes the tracker maximum weight equal to one
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Fig. 4. The performance of the system progressively improves as backward feature selection eliminates poor features. The upper line shows the seen data,
which is used in the feature selection algorithm. The lower line shows the performance of the unseen data. The left plot shows GBR question performance
(subject 1011). The centre plot shows KEN agree performance (subject 1011). The right plot shows GBR thinking (subject 3008).

ŵx =
wx

0

maxx(wx
0 )
, (9)

for x ∈ [1..κ].
To investigate the relative importance of head pose when

compared to the role expression, the trackers have been man-
ually divided into rigid and non-rigid facial points. The manual
division of trackers is shown in Figure 2. However, note that
it would also be possible to automatically separate points into
rigid and flexible sets, as described by Del Bue et al. [16].
The normalised tracker weights for each of the four NVC
categories are shown in Figure 5. All NVC categories have
significant weights assigned to trackers on flexible parts of the
face, which implies expression is significant for NVC recog-
nition. The weights assigned to rigid trackers are relatively
low for question NVC and to some extent in thinking. This
suggests that these NVC signals are largely conveyed by ex-
pression, with head pose having little importance. In contrast,
the rigid tracker weights have higher weights in agree, which
suggests that head pose has a role in the automatic recognition
process. This confirms our expectation that agreement is often
expressed by the nodding of the head. The weightings also
shows that some trackers that have low weights for all of the
studied NVC signals. The lowest weighted tracker overall was
number 22, which corresponds to a part of the eyebrow. This
may indicate either a problem with this tracker or that this area
is redundant for recognising the considered NVC signals—but
may be useful for others.

Although each tracker weight corresponds to a specific area
of the face, it is difficult to form an overall impression of
which areas of the face are involved, based only on these bar
charts. A better approach is to visualise the relevant areas in
relation to an actual face. However, the visualisation process is
complicated by the head pose. Head pose changes are not lo-
calised to an specific area of the face and should be discarded.
The head pose is generally encoded by the distance between
two rigid points on the face. Facial deformations can either be
encoded by distances which are either between rigid to flexible
facial points or between flexible to flexible facial points. The
remaining non-rigid points correspond to the flexible regions

of the face and are responsible for facial deformations. The
facial areas are based on a Voronoi tessellation of the face [17],
based on tracker positions on a manually selected frontal view
of the face. The normalised weights of each tracked point are
used to control the saturation of the local area in the image.
Relevant areas are shown as normal saturation. Irrelevant areas
are shown as desaturated, which makes the colour tend to
pure white for low weights. This enables an intuitive way to
visualise relevant areas for NVC expression around the face.

The results of the visualisation are shown in Figure 6.
The clearest example of facial areas corresponding to our
expectation is for thinking. The eyes are prominently selected
and gaze is already known to play a role in thinking NVC. The
other features provide evidence for less well understood NVC.
The brow region seems significant in question NVC. When
intense examples of question are viewed, there is generally
consistent brow lowering, lasting for less than a second,
which occurs at the end of a question sentence. The feature
selection indicates this behaviour is used as the basis for
recognition. This connection between verbal questioning and
brow lowering has not been previously reported in published
research, although Ekman mentions unpublished experiments
which found this association [18]. Brow raising and lowering
has also been documented in sign language but in this context,
the direction of raising or lowering has a distinct semantic
meaning, depending on the type of question that is being asked
[19]. For agree and understand, the areas selected are less
specific but generally indicate that the eyes and mouth are
involved and the brow area is not used. While the visualisation
shows areas that are involved in NVC recognition by machine
learning, it does not necessarily imply that humans use these
areas for recognition, but shows that information is present
in these areas. However, there is a strong possibility that
humans also use this information during NVC perception.
This approach could also be improved by using additional
trackers, which would increase the spatial resolution of the
visualisation.

The visualisation of the feature selection subsets used
annotation data from a single culture. It may be possible to
investigate if other cultures use different areas of the face for
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Fig. 5. Bar charts showing the normalised weights of tracking features for the four NVC categories. Rigid and non-rigid trackers are shown as different
colours, which indicate the relative importance of expression vs. head pose in recognition. The tracker ID numbers correspond to the numbering in Figure 2.
Results are from GBR culture.

Agree Question Thinking Understand
Fig. 6. Visualising the areas of face used for feature generation. The face is segmented based on Voronoi tessellation. More saturated areas indicate the
importance of an area, less saturated areas are not relevant for a particular NVC. Results are from GBR culture. The visualisation areas have been averaged
across test folds.

NVC perception, based on feature selection. Gaze patterns are
culturally dependent for emotion recognition [12]. However,
humans may be using different areas of the face for recognition
compared to an automatic system, and the current feature
extraction process is not expected to be as comprehensive as
human perception. Regardless, the areas used by an automatic
system may provide indirect clues as to the way human
perception operates. This cross cultural visualisation is not
attempted in this article as this would require a larger video
corpus, more comprehensive facial encoding and additional
annotation data to provide a reliable result.

VII. CONCLUSIONS

This paper describes a method to select an effective subset
of facial shape features for the recognition of NVC. Geometric
features contain a great deal of redundant and irrelevant
information. A SBE based method is used to find a subset
of features that are relevant for a specific NVC signal, for a
particular culture annotation group. This results in a significant
performance increase. The feature subset is then visualised
to show the facial areas used by the automatic system. This
provides evidence of which facial areas are involved in the
expression of each NVC signal. Knowing the areas of the
face used for NVC can suggest feature types that better encode

these local areas, avoids computation of irrelevant or redundant
features, as well as improving our understanding of human
behaviour.

The areas of the face that are used by the system either
correspond to the expected areas, or for NVC signals that
are less well understood, they give an indication as to the
facial areas that are involved. The areas used for each NVC is
different, which implies that the feature selection has isolated
feature components that are specific to each NVC. Thinking is
known to involve gaze aversion and this is clearly seen in that
feature components that encode eye movement are retained
by the feature selection process. Based on reviewing corpus
videos, it was manually observed that a sentence ending with
a question is often accompanied by a brief brow lowering and
this is also consistent with the visualisation of questioning
NVC.

The termination of the SBE process was based on the peak
performance of the training data used in the optimisation.
This does not select the optimal number of features but it
still resulted in a significant performance increase. If a system
can be manually tuned, a slightly better performance can be
achieved but the optimal number of features depends on the
specific NVC.

The features are only considered as simplistic temporal



variations. The temporal encoding currently considers an entire
clip, so cannot temporally localise relevant motion in NVC
expression. However, using a more detailed temporal encoding
that considers variation in a sliding window, a particular time
and area of the face could be identified as important for NVC
automatic regression. The feature selection framework also
might provide a framework to extend the existing automatic
system to other feature types. Considering many different areas
of the face (or holistic facial features) over multiple time
scales and temporal offsets will result in a vast number of
potential features. For this reason, techniques that are suitable
for spotting patterns in large data sets, such as data mining,
may be relevant to facial analysis.

The feature selection method presented here is a simple
but computationally intensive approach, taking several days
to complete. The removal of many features during the early
iterations was necessary to make the approach practical but the
performance implications of this approximation are not well
understood. Other feature selection methods may be investi-
gated to reduce the computation requirements and improve
performance.
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feature selection techniques in bioinformatics,” Bioinformatics,
vol. 23, no. 19, pp. 2507–2517, Sep. 2007. [Online]. Available:
http://dx.doi.org/10.1093/bioinformatics/btm344

[8] M. F. Valstar, M. Pantic, Z. Ambadar, and J. F. Cohn, “Spontaneous
vs. posed facial behavior: Automatic analysis of brow actions,” in Pro-
ceedings of the 8th International Conference on Multimodal interfaces.
New York, NY, USA: ACM, 2006, pp. 162–170.

[9] S. Petridis and M. Pantic, “Audiovisual laughter detection based on
temporal features,” in Proceedings of the 10th International Conference
on Multimodal Interfaces. New York, NY, USA: ACM, 2008, pp. 37–
44.

[10] M. Grimm, K. Kroschel, and S. Narayanan, “Support vector regression
for automatic recognition of spontaneous emotions in speech,” in Pro-
ceedings of the IEEE International Conference on Acoustics, Speech and
Signal Processing, vol. 4, 2007, pp. 1085–1088.

[11] R. el Kaliouby and P. Robinson, “Real-time inference of complex mental
states from facial expressions and head gestures,” in Proceedings of
the Conference on Computer Vision and Pattern Recognition Workshop,
vol. 10. Washington, DC, USA: IEEE Computer Society, 2004, p. 154.

[12] R. E. Jack, C. Blais, C. Scheepers, P. G. Schyns, and R. Caldara,
“Cultural confusions show that facial expressions are not universal,”
Current Biology, vol. 19, no. 18, pp. 1543 – 1548, 2009.

[13] H. Drucker, C. J. Burges, L. Kaufman, A. Smola, and V. Vapnik,
“Support vector regression machines,” Advances in Neural Information
Processing Systems, pp. 155–161, 1997, mIT Press.

[14] B. Schölkopf, A. Smola, R. Williamson, and P. L. Bartlett, “New support
vector algorithms,” Neural Computation, vol. 12, pp. 1207–1245, 2000.

[15] I. Kanluan, M. Grimm, and K. Kroschel, “Audio-visual emotion recog-
nition using an emotion space concept,” in Proceedings of the 16th
European Signal Processing Conference, Lausanne, Switzerland, August
2008.
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