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Abstract. The aim of this paper is to learn driving behaviour by associ-
ating the actions recorded from a human driver with pre-attentive visual
input, implemented using holistic image features (GIST). All images are
labelled according to a number of driving–relevant contextual classes (eg,
road type, junction) and the driver’s actions (eg, braking, accelerating,
steering) are recorded. The association between visual context and the
driving data is learnt by Boosting decision stumps, that serve as input
dimension selectors. Moreover, we propose a novel formulation of GIST
features that lead to an improved performance for action prediction. The
areas of the visual scenes that contribute to activation or inhibition of
the predictors is shown by drawing activation maps for all learnt actions.
We show good performance not only for detecting driving–relevant con-
textual labels, but also for predicting the driver’s actions. The classifier’s
false positives and the associated activation maps can be used to focus
attention and further learning on the uncommon and difficult situations.

1 Introduction

The objective of this manuscript is to learn the relationship between behaviour
and visual stimulus in the context of driving. This is an extremely complex task
due to variability in both the visual domain as well as the actions performed by
the driver. Such actions are arguably dependant upon high level reasoning and
context. However, we demonstrate that pre-attentive vision based upon simple
holistic descriptors can account for the majority (∼ 80%) of a driver’s actions
using minimal training (< 1%).

The act of driving require little active attention for an experienced driver,
allowing extended driving periods of several hours while at the same time having
a conversation, thinking about an itinerary, etc. Indeed, this fact is a source of
hazard, as an inattentive driver is less likely to react to unexpected emergencies.
This article studies how pre-attentive visual perception can be used to learn
aspects of driving behaviour by observing a human driver, releasing attention
for other tasks such as tracking, traffics sign recognition, planning, etc. The
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learning is performed by recording the driver’s actions (eg, braking, steering) at
each frame together with a coarse labelling of each frame according to a set of
driving contextual categories (eg, motorway, junction, pedestrian crossing). We
choose to use holistic image features (so-called GIST) as a functional equivalent
to pre-attentive vision in humans. GIST are a class of visual descriptors that
encode a global representation of a visual scene’s content, as opposed to local
image features. This holistic aspect, together with the low resolution it requires,
is consistent with the visual signal processed by the periphery of the retina in
the absence of (relevant) gaze fixation. This is in stark contrast with feature–
based methods that rely on high resolution extraction of sparse descriptors, and
therefore belong to attentive vision.

Holistic representations of visual scenes have received a lot of attention during
the last decade [1–4]. The rationale behind the use of holistic image descriptors
for visual context description is that they are insensitive to the small variations
that abound in complex scenes and hamper classification based on local features.
This is especially critical in urban scenes, where the amount of visual information
and variability is enormous. The original version of the GIST was proposed by
Oliva & Torralba, who compared two descriptors based on the Fourier transform
of image intensity [1]. The first one was based on the Fourier transform computed
on the whole image (DST); the second is based on a windowed Fourier transform
(WDST), localised on a coarse 8× 8 grid. The latter was shown to contain more
information than the first, and was used to define a set of perceptual properties
(roughness, ruggedness, etc.) that allow for scene classification. In later publi-
cations by the same authors, the Fourier transform was replaced with steerable
[2, 5], or Gabor wavelets [3], computed over varying scale and orientation and
averaged over grids of varying sizes. The dimension of the feature vector was
in some case reduced using PCA [6, 3]. Renninger & Malik studied how human
subjects could identify visual scenes even after very brief exposures (< 70ms),
and proposed a GIST–like model as an explanation of those results [6]. Douze et
al. compared GIST descriptors with bag-of-words approaches for image search,
using the INRIA ‘Holidays’ and ‘Copydays’ datasets, and found that GIST de-
scriptors yield lower performances than state of the art bag-of-word approaches,
yet with a considerably lower computational and memory cost [4]. Siagan &
Itti, used similar descriptors for the identification of indoor and outdoor scenes
in a mobile robotics context [3, 7]. Their implementation differs insofar as they
use different filter banks, including centre-surround colour sensitive filters, and
the resulting feature vectors were post-processed using PCA and ICA. Acker-
man & Itti used spectral image information for steering a robotic platform on a
path following scenario on two simple tracks [8]; in contrast, we consider a large
database of real urban scenes. Kastner et al. [9] use a GIST variant for road type
context detection, limited to the three categories ‘highway’, ‘country road’ and
‘inner city’; their main contribution was the hierarchical principal component
classification (HPCC).

In contrast, in this article we attempt to detect 13 contextual labels of varying
difficulty pertaining to scene environment, road type, junction type along with
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Fig. 1. Overview of the pre-attentive driving behaviour learning framework.

some other attributes. Moreover, we learn relations between the visual context
and five of the driver’s actions: the activation of each of the three pedals, plus
steering. We then show how these classifiers can be reversed to provide activation
maps that determine the salient visual information that influences each action.
The framework we propose is illustrated in Fig. 1: images are first resized and
the contrast is normalized, then they are convolved with a filter bank, and the
response is averaged over a grid; this forms the GIST descriptor. Then, two
experts are learnt from these descriptors: the first one learns to detect contextual
categories using hand labelled training samples; the second learns to predict the
driver’s actions. In this graph, the red dotted arrows represent information that
is only provided at the training stage.

2 Methods

In this section we describe the learning framework illustrated in Fig 1: first, in
section 2.1 we describe the GIST descriptor used, and propose a novel formu-
lation of the descriptor; second, in section 2.2 we briefly discuss the learning
algorithm.

2.1 Holistic image descriptors (GIST)

GIST are holistic image descriptor that encode a whole visual scene in one feature
vector, generated by a coarse scale local filtering of a low resolution version of
the image. The exact implementation varies in the literature, and the exact
type of filters used does not seem to bear a major effect on the performance for
context detection. In this work, we start by downscaling the images to 128×128
and normalizing the contrast, before filtering the resulting image with a bank of
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Gabor filters tuned to 8 different orientations and 4 scales; this results in p = 32
jets. The data size is then reduced by averaging the jets over a coarse grid
laid over the image. Here again, the size of the grid used vary in the literature
(we investigate the effect of this parameter in section 3.3); Oliva and Torralba
reported a better performance of 4 × 4 versus 1 × 1 grids for context detection
[1]. In this article we consider grids of size 1×1, 2×2, 4×4 and 8×8, separately
and in combination (see Fig. 2).

Fig. 2. Illustration of the grid averaging process. The left hand side shows the standard
GIST grids, for sizes ranging from 1 × 1 to 8 × 8. The middle shows the effective cells
for 2 × 2 grid with overlap: the green, red and blue square represent three overlap-
ping squares. On the right, the graph shows an horizontal slice of this last grid, with
overlapping Gaussians.

One issue with this classical implementation is that the GIST vector can be
very sensitive to small shifts of the features that lie close to the grid’s boundaries.
We propose an alternative sampling procedure based on overlapping smoothed
cells. In this approach, adjacent rows of cells are overlapping by 50%, leading
to an effective number of 144 cells for a 8× 8 grid (see Fig. 2). Each cell’s data
vector H = (h1, · · · , hp) is computed by averaging each jet Fk, k ∈ {1, · · · , p}
according to a Gaussian kernel of variance one quarter of the grid cell’s width:

hk(x0, y0, s) = Q
∑
x,y

Fk(x, y) exp

[
−
(
x− x0
s/4

)2

+

(
y − y0
s/4

)2
]
, (1)

where (x0, y0) is the centre of the grid cell, s is the cell width in pixels and Q is a
normalization constant. The overlapping grid cells and the Gaussian smoothing
are used to reduce the GIST vector sensitivity to small displacements at the
grid’s boundaries, and is shown to significantly improve performance on action
prediction.

We will dispense with the additional PCA and/or ICA post-processing that
is commonplace in the GIST literature (eg, [3]). Although reducing the feature
dimension can be useful for some processes, we will rely on the boosted classifier
to reduce dimensionality selectively through feature selection for each target
category.
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2.2 Classification

We use Boosting for learning both contextual labels and actions, as it has been
shown to be successful for input selection and recognition [10, 11]. We use a vari-
ant called GentleBoost, that has been shown to be more robust to noisy datasets
[12]. Boosting is based on combining the weighted responses of a population
of simple classifiers (called ‘weak learners’) into one robust classifier. The weak
learners li = (di, τi, si) we used are simple decision stumps, each one applying a
threshold τ on one of the feature vector’s dimension d

R(l,v) =

{
+s if vd > τ
−s otherwise

, (2)

where, s = {−1,+1} encodes the sign of the threshold that is applied. For each
round of boosting i, the input dimension that best separates positive and nega-
tive examples is chosen, and the weights are updated. The classifier is therefore
described by L = {(l1, w1), . . . (li, wi), . . . , (lN , wN )}, and the response is given
by:

R(L,v) =

N∑
i=1

wi ·R(li,v). (3)

As the number of weak learners is lower than the number of input dimensions,
the learning process is effectively performing feature selection from the high
dimensional input, and the weight of each weak learner provides a cue of the
relative importance of each input towards the decision. In the following, and un-
less stated otherwise, the classifier was always trained using 1,000 samples from
the dataset (0.7%), with half of the training set containing positive examples,
and half negative examples. This positive/negative ratio was enforced to ensure
that a sufficient number of positive examples were shown to the classifier, even
for infrequent categories. Unless otherwise stated, the classifiers are evaluated
on the rest of the dataset (ie, > 99% of the data).

2.3 Activation

In order to focus attention and direct higher level processes to relevant areas of
the image, we need to evaluate which parts of the visual scene the predictors are
tuned to, and whether they contribute to the activation or the inhibition of the
action. We experimented with different ways to formalise what the predictors
are responding to, and settled on reprojecting the Gaussian smoothing kernel
in section 2.1 for each weak learner, weighted by this learner’s weight. Thus the
activation map is given by the mixture of Gaussians:

A(v) =

|L|∑
i

(wi ·R(li,v) ·G(li)) , (4)

for all weak learners li. In this equation G(l) is the Gaussian kernel centred at
the GIST grid cell li is associated with, with a variance of one fourth of the cell’s
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width. The resulting map provides, for all images, an illustration of which image
areas activate or inhibit each action.

Figure 9 shows the activation maps for each action for several example scenes,
where the image is overlaid by green for excitation and red for inhibition.

3 Results

We evaluated the learning on a sequence taken from an instrumented car. The
sequence contains 158,668 images for a total of about 3 hours of data, encom-
passing a variety of driving situations and settings. The dataset is illustrated in
Fig. 3. The driver’s actions were recorded from the car for each frame in the
sequence.

Fig. 3. Some example images taken from the 158,668 in the sequence.

3.1 Learning context classes

Context information was provided in the form of a coarse labelling of each frame
in the sequence pertaining to 13 classes. The number of frames labelled for each
class is recorded in Table 1. The context classes are separated in four categories:
environment, road, junction and attributes.

We trained an ensemble of Boosted decision stumps for each context class,
using 100 rounds of Boosting on 1,000 frames chosen randomly; the performance
was then evaluated on the rest of the dataset (more than 150,000 frames). Fig. 4
shows receiver operating characteristic (ROC) curves for all context classes,
grouped by category. The confusion matrix is drawn in Fig. 4(e).

All classes are detected with good performance (note that all detectors are
processed independently, without enforcing mutual exclusivity). The detection
of the environment classes performs especially well, and the best performance
is reached for distinction between ‘inner urban’ and ‘non urban’. The lower
detection performance for ‘outer urban’ is likely to be due to the somewhat
fuzzier definition of the class; this is confirmed by the higher confusion value
between ‘non urban’ and ‘outer urban’. This high performance is consistent
with published results in the literature. These categories are obviously global
context categories and high performance validates other researchers’ findings
that GIST–type descriptors perform well for context recognition.
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Table 1. Context labels associated to all images in the sequence (total: 158,668 frames).

Index Category Label Count

1 environment non-urban 47,923
2 environment inner-urban 82,424
3 environment outer-urban 28,321
4 road single lane 31,269
5 road two lanes 86,879
6 road motorway 38,880
7 junction roundabout 2,007
8 junction crossroads 17,366
9 junction T-junction 7,895
10 junction pedestrian crossings 29,865
11 attributes traffic lights 21,799
12 attributes road markers 6,462
13 attributes road signs 3,387

However, the performance is surprisingly high for other (more difficult) cat-
egories which make less use of global context. For the road category, confusion
values are high between the ‘single lane’ and ‘inner urban’ classes, and the ‘mo-
torway’ and ‘non urban’ classes, which are naturally consistent with expecta-
tions. The detectors for junction and attributes show a good performance for all
classes (the very high performance on the ‘roundabout’ class may be due to the
relatively low number of examples in the database). The confusion matrix shows
a large confusion between all junction and attributes classes, and the ‘inner city’
class. This is consistent with the reality of traffic settings, and it should be noted
that traffic lights (for example) are fundamentally local visual events, and there-
fore what is detected in this case is the visual context in which they are likely
to occur, which is indeed a town centre intersection.

3.2 Learning driving actions

In a second experiment, we learnt to predict driver’s actions from the gist fea-
tures. The actions we considered are the pressing of one of the three pedals
(Accelerator, Brake and Clutch) and the action of steering left or right. The
actions were discretised, and therefore the amplitude of each action was disre-
garded for this experiment. Note that observation of the data revealed that the
actions of pressing the clutch or the brake were binary actions anyway.

The classifier used was GentleBoost with decision stumps as weak learners; it
was trained for 100 rounds with 1,000 randomly selected data points (less than
1% of the dataset).

The action prediction performance is recorded in Fig. 5: the ‘clutch’ and
’brake’ actions are predicted well (with 80% true positives for 10% false neg-
atives); the two predictions also share a strong confusion value. This effect is
driven by the large number of cases where the driver brings the car to a stop,
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Fig. 4. (a–d) ROC curves for the detection of different type of contextual information
(see Table 1); (e) confusion matrix. All plots are for a combination of all overlapping
grids for 100 rounds of Boosting, averaged over 10 runs.
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Fig. 5. Performance of the action prediction: (a) ROC analysis, and (b) confusion ma-
trix. The results are for 100 rounds of boosting on the combined grids GIST descriptors;
the training is done with 1,000 random frames, and tested with the rest of the dataset.
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pressing concurrently both brake and clutch. The performance when predicting
the accelerator pedal and steering left or right is lower (80% false positives for
30% false negatives) but still good considering the large variability in the data.
There is positive confusion values between steering and acceleration, which is
consistent with good driving technique. The positive confusion between left and
right steering is likely to come from the intersection situations, where steering
left or right is equally plausible from visual information only.

(a) one image
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Fig. 6. Illustration of the driver’s and the system’s elicited actions, on a short sub-
sequence (1,000 frames). (a) first image in the sequence; (b) from top to bottom: the
driver’s action, the system’s elicited actions, and the system’s raw response. The pre-
dictor’s response was smoothed using a 5–points moving average.

Fig 6 illustrates the quality of the action prediction on a short subsequence:
the graph show curves for each action, for the driver and for the learnt response
potential and final decision, respectively from top to bottom. The classifier was
trained for 100 rounds on 1,000 frames taken randomly out of the 158,668. The
classifier’s response was smoothed using a 5–points moving average to remove the
isolated outliers. The prediction for ‘Brake’, ‘Clutch’ and ‘Accelerator’ (acceler-
ator pedal) is of very good quality for the whole sub-sequence. The prediction
for steering ‘Left’ or ’Right’ is not as reliable, but follows nonetheless the same
patterns as the driver’s.

3.3 Evaluation of the system’s parameters

We evaluated the influence of the GIST grid size and of the number of Boosting
rounds on the detectors’ performance, the results are displayed as ROC curves
in Fig. 7 and 8. These ROC curves show the average performance over all classes
and over 10 successive trainings of the detectors, each time with 1,000 randomly
selected samples, and evaluated on the rest of the dataset. Figs. 7 show the
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Fig. 7. Analysis of the effect of the GIST grid size on performance for (a) context
detection and (b) action prediction.

performance for different GIST grids: 1×1, 2×2, 4×4, 8×8, and combinations
of them all with and without overlapping. Each curve was obtained for 100
rounds of boosting. The best performance was obtained for using 8× 8 grid and
no additional performance was gained when using jointly a combination of all
grids. The performance remained very good when using a 4×4 grid but dropped
when using coarser histograms. When using overlapping smoothed grids, the
performance for the context detection task was not improved compared to the
8 × 8 grid (Fig 7(a)); on the other hand, the performance for action prediction
was significantly improved (Fig. 7(b)). This is likely to be due to less reliance
upon global context and localised higher variability in the aspects of visual scenes
relevant for predicting actions; eg, the position and the shape of the vehicle being
followed can change to large extent. The non-overlapping grid used in classical
GIST implementations make the feature vector sensitive to changes at the grid’s
boundaries, whereas an overlapping grid is less affected.

Fig. 8 shows the performance obtained for varying the number of rounds
of Boosting, using an overlapping smoothed grid. No significant improvement
was obtained by rising from 300 to 500 rounds, and 100 rounds yielded good
performance. The performance for a single round of boosting was given as a
baseline for a single decision stump’s performance. Similar results were obtained
when using other grids.

3.4 Predictors’ activation

In order to get a better insight in what rules the system learns from the driver,
we use the classifier inversion described in section 2.3 to identify what parts of
the visual scenes activate the different action predictors. In Fig 9, the activation
maps for three different situations are shown, for all actions. On those maps,
the original image is overlaid with green on the excitatory areas and red on the
inhibitory areas.

We expect the clutch pedal to be depressed when reducing speed to a min-
imum or when the car stops. On the left image, we can see that the clutch is
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Fig. 8. Analysis of the effect of the number of rounds of Boosting on performance for
(a) context detection and (b) action prediction.

activated by the presence of another car immediately in front. On the middle
image the car is further away, and the same image area, now empty of cars,
inhibits the ‘clutch’ predictor; a similar inhibition pattern is visible in the right
image where the road ahead is free. The second row shows consistent activation
patterns for the ‘brake’ action: on the left, the empty road in front inhibits the
predictor whereas the pedestrian crossing area activates it. On the middle, the
presence of a car immediately in front leads to a strong excitation, whereas on
the right an empty space yields a strong inhibition. As expected, the ‘acceler-
ator’ activation is the opposite of the ‘brake’: activated by empty spaces and
inhibited by other vehicles in front. The activation maps for steering actions
are somewhat more difficult to interpret, as expected from the lower prediction
performance. The ‘left’ and ‘right’ actions appear to be activated by obstacles
and to promote veering away from them (see left images). They also seem to
react to the vehicle’s position in its lane, as evidenced by the sharp inhibition of
steering generated on the central white line (see the bottom–right image).

4 Discussion

In this article we attempt to model driving behaviour by learning the relationship
between a human driver’s actions and holistic image descriptors. Supervision
comes in two forms: first, a coarse labelling of the images in terms of a variety
of driving–relevant contextual categories; second, a frame per frame record of
the driver’s actions when faced with this situation. We use GIST features as
an equivalent to human pre-attentive vision, for encoding the visual input, and
attempt to learn, for all images, both the associated labels and the driver’s
actions.

The GIST descriptor is a generic approach for holistic image features, and
has several free parameters. Experimenting with different type of grids for the
GIST descriptor, we found that the best performance was obtained for a 8 × 8
grid. Moreover, the small difference in performance between 8 × 8 and 4 × 4
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Clutch

Brake

Accelerator

Steering left

Steering right

Fig. 9. Activation maps on selected frames for each action predicted by the system;
green shows activation and red inhibition.Areas of empty road activate acceleration and
steering towards them, while inhibiting braking and pressing the clutch. Conversely,
other vehicles on the road inhibit acceleration and steering towards them, while exciting
braking, pressing the clutch and steering away from them—see text.
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grids make in unlikely for finer grids to increase performance notably, for a
high computational cost. Instead, we proposed an overlapping grid smoothed
using Gaussian functions, that lead to a significant performance improvement
for action prediction (see Fig. 7(b)).

We found that the optimal performance is reached with a relatively low
number of rounds of Boosting for both context detection and action prediction
(100 rounds); this is a large dimension reduction compared to the original feature
vector (6,496 for the combined overlapping grids). Therefore, the relatively high
dimensionality of the original feature vector is not an issue after the training
stage as each classifier only uses a small carefully selected proportion of it. Those
dimensions and their respective contribution to the classifier’s response can be
reprojected in the image domain as discussed in section 2.3, and produces the
activation maps shown in Fig. 9.

The high performance of pre-attentive vision for detecting the environment
class (‘non urban’, ‘outer urban’, or ‘inner urban’) is consistent with previous
results in the literature. Very good performance was also obtained when detecting
more complex aspects of the driving context such as T–junctions, pedestrian
crossings, or even traffic lights (see Fig. 4).This shows that holistic features
do carry a large amount of visual information relevant for interpreting driving
scenarios. Moreover, the success in detecting what are essentially local events
(eg, traffic lights) shows the high contextual prior that permeates most driving
visual scenes: the presence of an intersection in an urban setting, for example,
is a strong predictor for the presence of a traffic light, or road markings.

The performance with which the driver’s actions can be predicted from holis-
tic image features, is a more unexpected result (see Figs. 5 and 6). Indeed, the
system does not have insight into the driver’s intentions and lacks any formal
knowledge of the highway code. The fact that the driver’s actions can be pre-
dicted at all, only from transient holistic image features, illustrates the intuition
that most of a driver’s actions are completely determined by the context in which
he is, and only a small fraction is determined by intention, attentive vision and
high–level reasoning. These cases are of special importance for learning an at-
tentional model of the driver’s behaviour: we expect the false positives to be the
instances in the dataset where the driver’s pre-attentive actions were inhibited
by higher–level considerations. If we consider the case of crossing traffic at an
intersection, pre-attentive vision may learn to slow down before the intersection,
but the driver will then need to actively assess whether the way is free or if he
needs to stop. The activation maps shown in Fig. 9 provides us with a useful
indication of which parts of the scene are relevant for taking a decision; together
with the driver’s gaze, they provide a way to focus the attention of a higher
level feature–based learning on the most promising parts of the visual scene.
Therefore, the learning of a more complex model can be bootstrapped by the
activation maps at false positives and the driver’s gaze can be combined to learn
the attentive components of driving. In this context, the pre-attentive model
serves as a filter to focus attentional learning towards the rare instances where
it is required, and the aspects of the scenes that may be of importance.
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5 Conclusion

Holistic image descriptors have received a lot of attention in the recent year, both
from the computer vision and the psychology communities, as a good model for
fast, pre-attentive vision, and a good feature for scene identification. We used
such GIST features for learning driving behaviour from a human driver, and
obtained very good results both for the detection of visual context labels and
for the prediction of the driver’s actions. The fairly high performance of the
action prediction illustrates the fact that only a small proportion of the driving
actions require formal understanding of the driver’s intentions or the highway
code. This is a vivid illustration of the strong priors at work during normal
driving behaviour, and of how much information pre-attentive perception can
carry, as 80% of a driver’s actions can be predicted. Such a performance allows
to focus attention on learning the more complex rules that underlie the 10–20%
of problematic cases.
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