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Abstract

In this paper we present a framework for accumulating on-line a model of a

moving object (e.g., when manipulated by a robot). The proposed scheme is

based on Bayesian filtering of local features, filtering jointly position, orien-

tation and appearance information. The work presented here is novel in two

aspects: First, we use an estimation mechanism that updates iteratively not

only geometrical information, but also appearance information. Second, we

propose a probabilistic version of the classical n-scan criterion that allows us

to select which features are preserved and which are discarded, while making

use of the available uncertainty model.

The accumulated representations have been used in three different con-

texts: pose estimation, robotic grasping, and driver assistance scenario.

Keywords: Object model building; visual representation; feature tracking;

temporal filtering.
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1. Introduction

This article presents a framework for on-line generation of an internal

representation of unknown objects or scenes, that are observed by the system

while subjected to motion. The proposed method is generic and can be

applied to any feature. Also, it allows the correction over time of not only

feature location, but also appearance information. In contrast, the state-of-

the-art focuses on the accumulation of feature position only, while assuming

the invariance of the feature’s appearance; this invariance does not hold when

objects are fully rotated. Moreover, this framework provides a complete

representation of objects’ edges structure, that makes it useful for a variety

of visual as well as robotic tasks—as illustrated in section 4.

In a first step, local contour descriptors are extracted from the image

and reconstructed in 3D using stereopsis.1 The model itself encodes the ob-

ject’s contours directly in 3D, and associate to them appearance information

such as colour. The scene’s contours are encoded in this representation as

strings of local features called 3D–primitives, that provide a first represen-

tation of the 3D shapes in the scene, enriched with appearance information.

The appearance information has the quality of being robust under view-

point changes, and therefore is used to improve matching reliability. At this

stage, the representation is merely a collection of 3D–primitives, objects and

background are not segmented in any way. By using the motion knowledge

1Alternatively, shape-from-motion could be used to obtain 3D–primitives. One ad-

ditional complexity with this alternative is that the reconstruction uncertainty and the

motion uncertainty are then related. In this work we focus on stereopsis as it allows for a

simpler formulation.
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provided either by a robot or a separate motion estimation2, we segment the

object from the scene (by selecting primitives that move according to the

robot arm motion) and accumulate the representation. Having control over

the object provides a very accurate knowledge of its motion that can be used

to track individual 3D–primitives. At each frame, new observations are used

to correct the 3D–primitives’ full pose and to enrich the representation with

new aspects of the object (e.g., parts that were previously occluded).

The mechanism presented herein improves the 3D object model obtained

from stereo reconstruction in three respects:

1. Accuracy: The representation is corrected over time using new obser-

vations.

2. Reliability: Tracking primitives over time, it is possible to re-evaluate

their reliability over time, and to discard erroneous ones. Since the

tracking is done in 3D space, the likelihood for erroneous primitives to

be tracked successfully is vanishingly small.

3. Completeness: Through Manipulation of the object, the system wit-

nesses it under a wide range of viewpoints, and accumulates 21
2
D rep-

resentations into a full 3D representation.

This framework requires the capacity to track features over time, and to

correct their position using several frames. This is an essential problem in

2In this work we will mainly show results using motion extracted from the robot arm,

for simplicity, but it could also be applied to visually computed motion (as in Fig. 10C and

[31]), as long as an estimate of the motion error can be computed. The rationale behind

using known motion is that it simplifies the problem and allows a better interpretation of

the accumulation error irrespectively of motion estimation accuracy.
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computer vision, and solutions belongs to two groups:

The first group consists of the geometric analytic solutions, including

multi-focal tensors [10] and bundle adjustment [40]. These approaches pro-

vide optimal solutions to the problem and are prominent for solving the

batch structure from motion (SFM) scenario. They can be designed to be

robust to erroneous data association (see [40] for a discussion). One major

problem of these solutions stems from the fact that they are fundamentally

batch processes: all views of the object need to be simultaneously available.

This can make the problem intractable for large sequences, and implies a

large delay for any active system. It has been proposed to split the prob-

lem into groups of, e.g., 3 frames, reducing both delay and computational

cost [23]. Nonetheless, these approaches face the dead-reckoning problem:

small motion errors accumulate over time to lead to large localisation errors.

Therefore, they generally need an additional global integration stage. David

Nistér [24] proposed a live SFM approach based on pre-emptive RANSAC.

Although the method is real-time it enforces strong constraints on feature

disparity, and is limited to the estimation of feature position.

The second group uses various flavours of the Bayesian filtering theory.

This provides an on-line solution by formalising the problem as a Markov pro-

cess where the state vector combines both the current pose and the visual

features’ bearing. This can be formalised as the general Bayesian tracking

problem—see [1] for a review. This theoretical formulation allows for an op-

timal solution, i.e., a Kalman filter [13], if the state vector has a multivariate

normal distribution and if the prediction and observation processes are linear.

In the mobile robotics context, the object whose model is being incremen-
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tally built is the environment itself, described as a set of landmarks. The

Kalman filter and its non-linear derivatives (e.g., extended Kalman filter)

have been used extensively to solve the so-called simultaneous localisation

and map-building (SLAM) problem (see, e.g., [5, 42, 8, 39, 21]). Andrew

Davison [3] proposed a real-time monocular SLAM approach based on EKF.

Also Monte Carlo Markov Chains have been used for tracking of multiple

targets [15, 16, 44]. Tao et al. proposed a Bayesian approach for 2D motion

segmentation in videos [38].

Because of the on-line constraint, the approach presented in this paper

belongs to the second category. One essential difference to typical SLAM

systems, is the large number of local features that the system needs to be

able to track, to describe the object’s shape completely, and the relatively

low distinctiveness of these features, whereas SLAM applications generally

rely on few sparse yet very distinctive features (e.g., SIFT [22]). Because of

this large number of features, we will track each feature individually instead

of maintaining a large joint covariance matrix. Moreover, we will track the

full pose of the features as well as their appearance properties to make use

of temporal information to improve both the accuracy of these appearance

cues, but also to generate an estimate over time of their reliability—i.e., how

invariant they are when the object is manipulated. The knowledge of this

invariance is critical for object recognition and pose estimation. For example,

for pose estimation, invariant cues are important for matching, whereas pose-

dependent ones are important for estimating the pose.

The novel aspects of this work are:

• full feature vector tracking: we make use of Unscented Kalman Fil-
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tering (UKF) [12] to track the distribution in the whole feature space,

instead of only considering the feature’s position. This includes the

feature’s orientation in space and the observed colour on both sides

of the edge. This allows us to keep track of the relative reliability of

different components of the feature vector by their filtered variance. It

also allows for a straightforward extension to other feature types such

as, e.g., junctions (see, [37]) or surface patches.

• probabilistic matching of features based on both geometric and appear-

ance information.

• temporal re-evaluation of a feature’s confidence according to the track-

ing success, and probabilistic argument for deletion or preservation of

features during occlusions.

The framework is described in section 2, then evaluated on different sce-

narios in section 3. Applications making use of these representations are

described in section 4 before we conclude in section 5.

2. Methods

In this section, we present the vision framework used to accumulate ob-

jects models. First in section 2.1, we will describe the local features that we

use in this work. Note that the framework is generic, and could be applied

to any local feature that defines a full pose and some appearance informa-

tion. Then section 2.2.5 defines the state space based on such features.

Section 2.3 discusses the feature tracking and filtering scheme, based on Un-
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scented Kalman Filtering (UKF). Finally, section 2.4 discusses the confidence

re-evaluation and the probabilistic n−scan criterion.

2.1. 3D line features extraction

In this work we use sparse image descriptors called visual primitives, that

exist both in 2D and 3D space, and were discussed in [20, 27, 33]. In the

2D space, those primitives provide a condensed representation of image in-

formation sparsely sampled along image contours. In a first stage, linear

and non-linear filtering operations are applied to the image (see, e.g., [11]).

These filtering operations provide local information such as the likelihood

that a pixel is on an edge, the orientation of this edge, the phase (that

contains the type of contrast transition, see [17]) and the colour. Primi-

tives are first extracted at contours and form a feature vector containing the

edge position with sub-pixel accuracy, the local orientation, phase (contrast

transition), colour on both sides of the edge and optic flow. Positions are

detected sparsely with sub-pixel accuracy at places likely to contain edges

(see, e.g., [11] for a description). In the following, we refer to such features

as 2D–primitives.

Such 2D–primitives are extracted on stereo pairs of images and are matched

using the epipolar line and similarity constraints (see Fig. 1B, and [30] for

an assessment). Pairs of matched 2D–primitives provide enough information

to reconstruct the 3–dimensional equivalent of a 2D–primitive, denoted 3D–

primitive in the following (see Fig. 1C). We direct the reader to [6, 10] for a

description on classical stereo reconstruction and [27, 33] for the special case

of primitives.

A 3D–primitive encodes a scene contour’s local position and orientation
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right image

left image

B. 2D-primitives

C. 3D-primitives

A. original images

Figure 1: Illustration of the primitive extraction stage. A) original images (left and right);

B) extraction of 2D–primitives; and C) stereo reconstruction of 3D–primitives.

along with the local contrast and colour on each side.

s = (p, ω, c) (1)

where p is the full 6D pose in space ; ω is the local phase ; c is a 6–dimensional

vector encoding the RGB colour values on both sides of the contour. As a

consequence, a 3D–primitive is encoded as a 13–dimensional feature vector.

A 3D–primitive’s covariance is encoded as the 13 × 13 block-diagonal

matrix Σ.

Σi =

 ΣG,i

ΣA,i

 (2)

Where ΣG,i is the uncertainty in the feature’s 3D pose (geometric uncer-

tainty) and ΣA,i is the uncertainty in the feature’s appearance (appearance

uncertainty). Geometric uncertainty is propagated from the 2D primitives’
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position and orientation uncertainty, using geometric reconstruction; the 2D–

primitives uncertainty is calculated from the uncertainty principle applied to

the local filters used to extract and locate the primitives [33]. The derivation

of the Jacobians for the 3D reconstruction of position and orientation is too

long to be reproduced here, but it can be found in a technical report [28]. Ap-

pearance reconstruction uncertainty has been estimated using Monte-Carlo

simulation on the available data.

Object shapes are described in this framework as a collection of 3D–

primitives. Each feature will be represented by the triplet Zi = {si,Σi, Bi}

where si is the expected feature vector, Σi its covariance and Bi ∈ [0, 1] the

current belief that this feature belongs to the object.

2.2. Definition of the feature state space

The 3D–primitives described in the previous section contains two very

different type of information. First a 3D–primitive’s geometric information

is encoded in the form of its location and its orientation, forming a full 6D

pose. Note that because we are considering edge features, there is no exact

definition of the rotation angle around the edge itself, as in the general case

there is not one single plane where the edge is fully embedded. Indeed, in

most cases edges will signify places in the image where either occlusions occur,

or where two distinct surfaces meet. For this reason this last dimension is

only estimated from the available viewpoints. This means that this value is

expected to have high uncertainty, and is only used to preserve consistency

between the appearance cues on both sides of the 3D-edge.

The space of all poses and all Rigid Body Motions (RBM) is called

the Special Euclidean space of dimension 3 (SE(3)). This work uses dual-
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quaternions to represent poses and motions in this space. Dual-quaternions

have several advantages when representing SE(3), as they allow for a com-

pact formulation of a pose transformation under a RBM, combination of two

RBMs, and RBM interpolation and blending. Moreover, they allow for a

simple conversion to 6–dimensional representation of poses. We will first

describe quaternions and their use to represent 3D rotations SO(3) in sec-

tion 2.2.1, then expose how this formulation can be extended to SE(3) in

section 2.2.2. The quaternion, and dual-quaternion representation of rotation

and poses (respectively) provide a compact representation, allowing for effi-

cient transformations. In contrast, Euler angles suffer from the gimbal lock

problem, and transformation of 3× 3 matrices require an additional step to

ensure that the resulting matrix indeed defines a rotation. Section 2.2.3 then

discusses how concretely we will encode a 3D–primitive’s pose into a state

vector, and section 2.2.4 how the appearance cues are treated. Section 2.2.5

formalises the complete state vector we use in this work.

2.2.1. Quaternions

All 3D rotations lie on the surface of a sphere called the Spatial Orthog-

onal Space of dimension 3, written SO(3). Because of this unusual topology,

this space differs from Euclidean spaces in several properties, and therefore

rotations are not aptly represented by mere vectors: for example, the average

between two vectors designating points on the surface of a sphere will not

lie on the sphere’s surface itself. Rotations could also be represented using

Euler angles, which face the Gimbal lock problem: certain angles will lead to

a degenerate state where certain motions become impossible. It is also possi-

ble to represent 3D rotations by 3× 3 matrices, but this implies the use of 9
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parameters instead of the required 3, and has the drawback that operations

between rotations such as blending can lead to matrices representing invalid

3D rotations. Quaternions [9], on the other hand allow a compact and effi-

cient representation of 3D rotations, and allow for an efficient blending and

combination of 3D rotations without the risk of generating degenerate states.

Quaternions are an extension of complex numbers, composed of one real

part and three imaginary parts:

q = q0 + q1i+ q2j + q3k = (q0,v) (3)

for convenience, we will write

<[q] = q0 (4)

=[q] = v = [q1, q2, q3]
> (5)

where <[q] is called the real part and =[q] the imaginary part of the quater-

nion q. The conjugate of quaternion q is given by:

q∗ = (q0,−v) (6)

The unit-quaternion

q = (cos(α/2), sin(α/2)r) (7)

describe a rotation of angle α around a rotation axis r (with ‖r = 1‖). Note

that all unit quaternions, such that qq∗ = 1 represent valid rotations in

SO(3), The similarity with Euler axis-angle notation allows for straightfor-

ward transformation between the two notations.

Similarly, the combination of two rotations encoded by q1 and q2 is given

by:

q12 = q1q2 (8)
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Also, efficient algorithms exist for interpolating and blending in SO(3) using

quaternions (SLERP [36]).

2.2.2. Dual-quaternions

Dual-quaternions [43] are an extension of quaternions that extend quater-

nion properties and formulations to the Special Euclidian space of dimension

3 (SE(3)), the space of all RBMs:

SE(3) ∼= R3 × SO(3) (9)

A dual-quaternion consists two quaternions, a real part and a dual part:

q̌ = qR + εqε (10)

such that ε2 = 0 and qε = iq4 + jq5 + kq6. A RBM is represented by a unit

dual-quaternion such as:

q̌q̌∗ = 1 (11)

where q̌∗ = q∗R − εq∗ε is the conjugate of q̌.

The equivalent translation and rotation Euler axis-angle representation

can be recovered from a dual-quaternion q̌ by the equations:

α = 2 arccos<[qR] (12)

r =
1

sin α
2

=[qR] (13)

t = =[2qεq
∗
R] (14)

designing a rotation of angle α around an axis r and a translation of t.

The advantage of this notation is that it allows for convenient formulation

of points and lines [7, 35] transformation under a RBM:

p′ = q̌pq̌∗ (15)
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The combination of two RBMs q̌1 and q̌2 is given by:

q̌12 = q̌1q̌2 (16)

Some studies have shown that RBM can be efficiently interpolated in dual-

quaternion notation (e.g., [14]).

2.2.3. Feature pose encoding

In this work we encode a feature’s pose as the dual-quaternion p̌t, that

aligns the coordinate system’s z–axis to the feature’s orientation, and the

y–axis to its normal.

One advantage of this formulation is that we can use Eq. 16 to model a

feature’s pose transformation according to the RBM described by the dual-

quaternion m̌t,t+1 as:

q̌t+1 = m̌t,t+1 · q̌t (17)

Therefore, a RBM transformation can be computed as a simple product of

two dual-quaternions. The geometric covariance is computed from classical

line reconstruction formulae Jacobians (see, e.g., [6]).

2.2.4. Apperance cues

The geometric information captures the feature’s pose information. For

the purpose of matching and tracking features, it is required to also have

pose-independent information that we will call appearance information. In

our case, we will encode the contrast transition across the edge as the local

phase ω (see [17]), and the colour information on both sides of the edge. The

phase encodes the type of contrast transition across the edge in a 2π periodic

continuum between (−π,+π], where a bright line on a dark background is
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encoded by a phase of 0, a dark line on a bright background by π; a bright

to dark edge by −π/2 and a dark to bright edge by +π/2. For the colour

information, the CIE L∗a∗b∗ colour space is chosen as it offers two qualities for

our purpose. First, it is designed to be a perceptually uniform colour space,

and therefore, distances in this space correspond to the distances perceived

by humans. Second, the lightness is encoded by the L component, allowing

to reduce illumination effects on the two other components. Therefore, the

colour information on both sides of the edge is encoded as two Lab vectors c =

(L1, a1, b1, L2, a2, b2). It follows that the appearance vector is 7–dimensional.

A = (ω, L1, a1, b1, L2, a2, b2) (18)

Alternatively, other type of appearance cues could be used (e.g., texture).

The initial covariance of a reconstructed 3D-primitive’s appearance vector

depends on the camera properties and the illumination conditions, and was

therefore evaluated a priori by tracking thousands of features. Figure 2 shows

the standard deviation of features’ appearance over time when the object

was moving. Each bar in the graph shows the standard deviation of one

appearance component. For example, phase has a low deviation whereas

luminance has a strong deviation—due to illumination.

2.2.5. State vector

The resulting state vector s is a 13–dimensional vector describing jointly

geometric and appearance information:

s = (t, αr,A) (19)

In this equation, t is the translation vector, r the rotation axis and α the

rotation angle (see Section 2.2.2). The covariance Σ is 13× 13 and block di-
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Figure 2: Appearance attribute uncertainties recorded as standard deviations. This was

obtained by tracking all features over time and evaluating the mean standard deviation

over all features.

agonal, composed of the geometric and appearance covariance matrices. The

geometric covariance is computed from the covariance of the 2D primitives

and the projection matrices (as detailed in [29]), the appearance covariance

is estimated by Monte Carlo simulation processed by adding a small amount

of noise to the original images.

2.3. Feature tracking and filtering

In this work we are interested in filtering full 6D poses. Because RBMs

in dual-quaternion representations are non-linear operations, we need a non-

linear implementation of Bayesian filtering. For these reasons we chose to

use an Unscented Kalman Filter (UKF) [12] to track and filter the features’

state vectors over time. The UKF is an extension of the classical Kalman

Filter [13] to non-linear operations, that estimates posterior distributions by

transforming a small set of specifically chosen points according to a non-
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linear function f(s). Because the distribution is assumed to be normal, only

few points are required to estimate it, and this makes the UKF one order

of magnitude faster than particle filtering. The UKF has been shown to be

more consistent than the EKF when estimating non-linear functions [12]—

this is especially the case for functions with strong non-linearities like the

orientation prediction. Moreover, it does not require the computation of the

prediction function’s Jacobians.

2.3.1. Prediction

In our case, the non-linear prediction function f(s) is fully defined by the

RBM imposed by the robot.

st+1 = f(st) =

 p̌t+1 = q̌t,t+1p̌t

At+1 = At

(20)

The motion operates on the geometric part of the state vector, while leav-

ing the appearance part unchanged. This is consistent with the assumption

of Lambertian surfaces that is widely used in multiple-view computer vi-

sion. Note that a more complex illumination model could be handled by this

framework, as it allows for non-linear prediction models.

Because this transformation is non-linear, there is no simple analytic for-

mulation to transform the multivariate distribution formed by the feature’s

estimate and uncertainty. One classical way to circumvent this difficulty

would be to use the first order Taylor expansion of the function f as a lin-

ear approximation—as is done, for example, in the Extended Kalman Filter

(EKF). The problem with this simplification is that linearising a non-linear

function can lead to large approximation errors, especially when the the func-

tion has strong non-linearities (like is the case for 3D rotation, for example).
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This leads to inconsistent estimations of the posterior covariance that may

lead to slow convergence (or even no convergence at all) of the EKF ap-

proaches. This sensitivity would also reduce the generality of the approach

to locally nearly linear features. Consequently, we make use of another, more

accurate method that is called the Scaled Unscented Transform, and has the

triple advantage of being generic, accurate, and not requiring the derivation

of Jacobians—see [12] for a comparison with the EKF.

2.3.2. Scaled Unscented transform

We make use of the Scaled Unscented Transform (SUT) to estimate the

predicted state’s covariance. The SUT allows to predict the transformation

of a normal distribution by a non-linear process f . This is done by selecting

a specific set of sample points from the distribution, and transforming them

according to f(s). This is different from particle filtering in the sense that

only a small number of specially chosen samples are necessary to estimate

a normal distribution, whereas particle filtering requires a large number of

samples to estimate generic distributions.

In practice, the unscented transform requires 2n + 1 samples Si with

associated weights Wi, for predicting a state Π̂ of dimension n.

S0 = st−1 Wm
0 = λ

n+λ

W c
0 = Wm

0 + (1− α2 + β)

Si = st−1 +
[√

(n+ λ)Σt−1

]
i
Wm
i = W c

i = 1
2(n+λ)

Si+n = st−1 −
[√

(n+ λ)Σt−1

]
i
Wm
i+n = W c

i+n = 1
2(n+λ)

(21)

In these formulae, [A]i refers to the ith column of the matrix A, and the

covariance matrix square root is calculated using Cholesky decomposition.
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Note that different weights are used for computing the mean (Wm) and the

covariance (W c). The weighting of the points is used to sample very nearby

points and thereby avoid non-local effects. The parameter λ is defined as

λ = α2(n+ κ)− n (22)

where κ = 0, α = 0.01 and β = 2 (as we have a Normally distributed prior).

We refer to [41] for a discussion of those parameters.

From these weighted samples, it is possible to evaluate the mean (ŝt) and

covariance (Σ̂t) of the predicted normal distribution:

ŝt =
2n∑
i=0

Wm
i f(Si) (23)

Σ̂t = ΣP +
2n∑
i=0

W c
i [f(Si)− ŝt] · [f(Si)− ŝt]> (24)

where ΣP = σP I is an estimate of the RBM prediction error, set to a diagonal

matrix with a small value σP (σP = 0.01). This value need to be set according

to the precision of the motion estimates. This step allows us to predict the

state vector of a primitive after the RBM f(s).

2.3.3. Matching

The SUT allows to predict a model of the object. The next step of the fil-

tering consists in comparing this predicted model with the observed features.

To this end, the predicted features Ẑi are compared with the newly observed

ones Z̃j by reprojecting them in both image planes and matching their pro-

jection using the Mahalanobis distance. Compared to the classical Euclidean

distance, the Mahalanobis distance has the advantages that it takes into
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account feature uncertainty and correlations between feature components;

therefore, it is a more robust measure in cases where feature uncertainty is

strongly anisotripic, like for reconstructed 3D features. Moreover, the Ma-

halanobis distance of a multivariate normal distribution is itself distributed

according to a χ2 distribution, which provides a theoretically sound distance

threshold for matching. A newly observed 3D–primitive Z̃j is matched with

a predicted 3D–primitive Ẑi if both of their projections in both frames are

matched according to a χ2 criterion applied onto their Mahalanobis distance.

(ŝi − s̃j)>(Σ̂i + Σ̃j)
−1(ŝi − s̃j) < χ2

k=13,p=0.05 (25)

In this equation χ2
k=13,p=0.05 indicates the p = 0.05 value in the χ2 distribution

of dimension 13; because the Mahalanobis distance has a χ2 distribution, that

guarantees that Eq. 25 will select 95% of the correct matches.

In this case, likelihood of the match µt in each projected frame is evaluated

using a normal distribution centred on the predicted primitive.

p
[
µt(Ẑi, Z̃j)

]
=

exp
[
−1

2
(ŝi − s̃j)>(Σ̂i + Σ̃j)

−1(ŝi − s̃j)
]

(2π)n/2
√
|(Σ̂i + Σ̃j)|

(26)

If the χ2 criterion is not met, we define that

p
[
µt(Ẑi, Z̃j)

]
= 0.

It may happen that several observed features match an accumulated one,

notably when the accumulated feature’s covariance is large. This will happen

for example when an object is moved closer to the camera: the predicted

covariance will be large, and cover several newly observed features. In this

case, the most likely match (according to Eq. (26)) one is preserved in a

19



winner-take-all fashion:

p [µi,t] = max
j
p
[
µt(Ẑi, Z̃j)

]
(27)

In this case, the other observed features are still considered as matched, and

will not be added to the representation.

2.3.4. Correction

Once the matching is done, the set of model features Π̂t can be corrected

from the newly observed features Π̃t using a straightforward Kalman filtering

approach. In this case, the equations for the Kalman filter’s correction stage

are simplified by the fact that both predicted and the observed states lie in

the same feature space. Therefore, the error vector between predicted and

observed states is:

∆s = s̃− ŝ (28)

The innovation matrix is given by:

D = Σ̂ + Σ̃ (29)

From those, the classical Kalman equations provide us with the optimal gain:

K = Σ̂ ·D−1 (30)

Finally the posterior distribution’s mean is:

s = ŝ+K ·∆s (31)

and its covariance:

Σ = (I −K) · Σ̂ (32)
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2.4. Confidence re-evaluation

The model is updated in a final step that is the combination of three

mechanisms: the first one updates confidence in each individual feature ac-

cording to how well it has been matched at this frame; the second adds newly

observed features that were not matched in the model; and the third discards

model features that have not been sufficiently confirmed by observations.

The rationale between this scheme is that a number of erroneous fea-

tures are expected to be observed at each time-step, mainly due to incorrect

stereo-correspondences. Also, it is expected that correct features may occa-

sionally fail to be observed, or even become occluded for extended periods of

time. Therefore we need a mechanism to weed out erroneous features while

preserving correct ones. This is classically achieved by the so-called n−scan

criterion in the Multi Hypotheses Tracking literature (see, e.g., [34]). In this

work we will make use of the probability p [µi,t] to replace this criterion by a

statistical argument.

Effectively, the confidence in a feature’s correctness is evaluated as a

measure of how consistently it has been observed over a length of time.

The complete matching history of an accumulated primitive is denoted as:

µ∗i,t = {µi,1, . . . , µi,t}

We propose a recursive formulation that allows us to update features’

confidence p [Zi] at each time-step according to how well the predicted feature

matched the observation (see Fig. 3). A straightforward application of Bayes
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Figure 3: Illustration of the primitives temporal matching.

theorem provides us with the following formulation for a feature’s probability:

p
[
Zi|µ∗i,t

]
=

p
[
µ∗i,t|Zi

]
p [Zi]

p
[
µ∗i,t|Zi

]
p [Zi] + p

[
µ∗i,t|Z̄i

]
p
[
Z̄i

] (33)

p
[
Zi|µ∗i,t

]
=

(
1 +

p
[
µ∗i,t|Z̄i

]
p
[
Z̄i

]
p
[
µ∗i,t|Zi

]
p [Zi]

)−1
(34)

If we assume the independence of the successive observations, we can write

the probability of their joint occurence as the product

p
[
µ∗i,t|Z̄i

]
=

∏
t

p
[
µi,t|Z̄i

]
(35)

p
[
µ∗i,t|Zi

]
=

∏
t

p [µi,t|Zi] (36)

From this, we can rewrite Eq. 33 as:

p
[
Zi|µ∗i,t

]
=

(
1 +

∏
t p
[
µi,t|Z̄i

]
p
[
Z̄i

]∏
t p [µi,t|Zi] p [Zi]

)−1
(37)

This formulation has the inconvenience that it requires to record all prim-

itives’ complete matching history µ∗i,t. This is impractical for an on-line al-
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gorithm, and therefore we derive a recursive formulation. From Eq. 34, we

reformulate the confidence computation as:

p
[
Zi,t|µ∗i,t

]
= (1 + ζi,t)

−1 , (38)

where ζ is evaluated recursively by

ζi,0 = 1/p [Z]− 1 (39)

ζi,t =
p
[
µ|Z̄i

]
p [µi,t|Zi]

ζi,t−1 (40)

with p [Z] is the prior probability that an observed 3D–primitive is correct,

and p
[
µ|Z̄i

]
is the prior probability for an erroneous observation. Although

the exact value of p [Z] is essentially object dependent and cannot be esti-

mated or calculated for an unknown object, we found experimentally that

changes in this value impact only slightly on convergence speed. Therefore,

we set it to a small value (p [Z] = 0.2 for all experiments). The value of

p
[
µ|Z̄i

]
depends directly on the quality of the matching process, and can

be theoretically set to the p–value of χ2 criterion used for matching (in our

case: p
[
µ|Z̄i

]
= 0.05). This parameter influence convergence speed and the

impact of weak matches, and can potentially be tuned to reduce outliers or

improve completeness. The value is set to p
[
µ|Z̄i

]
= 0.05 for all experiments.

.

2.4.1. Hypotheses acceptance and discarding: Probabilistic N-scan criterion

If an hypothesis’ confidence p
[
Zi,t|µ∗i,t

]
falls below a threshold τ−, then

it is deemed erroneous and discarded; if it raises above a threshold τ+, then

it is deemed verified up to certainty, and its confidence is not updated any

more. This allows for the preservation of features during occlusion. This

23



 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  0.2  0.4  0.6  0.8  1

ac
cu

m
ul

at
ed

 c
on

fid
en

ce

match confidence

first
second

third
fourth

fifth
upper threshold

Figure 4: Confidence update for repeated observations of the same match quality. The

x−axis shows the quality of the match and the y−axis the resulting updated confidence, for

the five first updates. The dashed line shows the threshold we used for these experiments,

i.e. τmax = 0.9. Above this value, the hypotheses were considered as confirmed.

is effectively a soft version of the classical n−scan strategy in tracking [34].

The n−scan criterion is used to limit the tracking complexity when allowing

for multiple data associations. It states that a feature should be kept if it

has been matched successfully n times, discarded otherwise. In our case,

the equivalent n value depends on how well the feature is matched in each

frame. If the feature is roughly matched, and the uncertainty is high, it will

require more frames to validate the association (i.e., a larger n). Conversely,

if the feature is accurately matched, it will be validated quickly (i.e., small

n). Fig. 4 shows the confidences accumulated after repeated observations of a
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primitive. In this graph, the x−axis records the match quality.3, the y−axis

shows the corresponding accumulated confidence, and the different curves

illustrate the confidences from first to the fifth observations. The dashed

line shows the level of the upper threshold τ+ = 0.9 that we chose for those

experiments. Any hypothesis whose accumulated confidence rises above this

threshold is deemed to be correct and preserved in memory.

2.4.2. Adding new features to the model

Observed primitives Z̃j that were not matched with any of the prediction

p
[
µt(Ẑi, Z̃j)

]
= 0, ∀Ẑi (41)

are then added to the representation to enrich it. Thereby the representa-

tion becomes progressively more complete, whereas erroneous hypotheses are

discarded. This is illustrated in Fig. 5.

3. Results

In this section we demonstrate the system’s performance using an artificial

OpenGL sequence and real sequences of a robotic system manipulating a

variety of toy kitchen utensils. The results are illustrated in terms of accuracy

improvement and model building.

3.1. Pose correction

We evaluated the pose correction on an OpenGL rendered artificial se-

quence. The sequence features a rotating cube, which position and shape is

3For this figure (only) it is assumed that features are repeatedly matched with the same

quality.
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frame 10 frame 20 frame 30 frame 40 frame 50

Figure 5: Accumulation of object model over time. Over 72 frames the object is rotated a

full 360 degrees (5 degrees per frame) by the robot arm, offering a full 3D view of the object

to the cameras. Features are progressively added to the representation as new aspects of

the object become visible, while visible features are corrected and occluded features are

preserved.

perfectly known. Therefore, each primitive is associated to the closest edge,

and its position and orientation is compared to this edge’s. The purpose of

the artificial cube experiment is to assess whether in an idealized scenario

the scheme can 1) improve reconstructed feature accuracy beyond what is

allowed by stereo performed on sub-pixel features, despite the sparsity of the

extracted 2D–primitives and the aperture problem.

In Fig. 6 we can see the position and orientation errors recorded after

several iterations of the process. This figure shows that the error in both

position and orientation decreases quickly through UKF filtering.

3.2. Model building

We evaluate our approach on a selection of objects, manipulated by a

robot arm. Note that these objects were chosen to evaluate best the perfor-
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Figure 6: Correction of the pose error after several iterations of the UKF filtering (the

cube has an edge size of 10 units).
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mance and limitations of the accumulation of edge features that we describe

in this work. For this reason, they were chosen to have little texture, strongly

curved surface and edges, occluding edges, and cast shadows.

Figs. 7 and 8 show the result of the accumulation scheme on several

objects. The first row show one image of the objects. In the second row,

the accumulated models are shown. It can be seen in these figures that the

accumulated features describe well the contours of the object, including the

occluded ones. In order to estimate the quality of the accumulated shape,

we estimated the three eigenvalues of the accumulated primitives’ position.

These are recorded for each object in the last row. These graphs show that

the object’s shape become more accurately modelled with iterations of the

process. For example, the pan generates two large eigenvalues and one small,

indicating a flat object with little depth. The vase and the knife, on the other

hand, have one main eigenvalue, indicating a flat object.

In Fig. 9 the convergence of the Kalman gain is illustrated by plotting the

mean trace of the gain matrices for all accumulated primitives in a model

against the number of iterations. The figure shows a clear convergence of

the gain for most objects, with the notable exception of the ‘pot’ and ‘pan’

sequences. Convergence of the gain implies that the estimated pose and

appearance of the primitives is converging over time. For this reason, the

aperture problem prevents the gain from converging for objects that are very

circular. In effect, for the ‘pan’ and ‘pot’ sequences, that contain mostly

circular structures, the primitives follow a perpetual drift along the circu-

lar contour which however does not disturb the actual shape reconstruction

process.
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4. Applications

The algorithm described in this paper has been used in three different

contexts. In the first application (briefly described in section 4.1), unknown

objects become segmented by a cognitive robot-vision system and a multi-

modal representation becomes computed. This learned representation has

then been used for pose estimation and grasp learning as described in sec-

tion 4.2. Finally, the algorithm has been used for the computation of large

scale maps in outdoor environments: We demonstrate the flexibility of the

extended Kalman filtering by accumulating additional information associ-

ated to primitives as for example their association to lane markers. This is

described in section 4.3.

4.1. Birth of the Object

In the cognitive system [19], the accumulation algorithm has been used by

a robot-vision system to acquire world knowledge in terms of the objectness of

things and object shape. For this a premature grasping mechanism is used to

get physical control over the object allowing it to move it in a controlled way.

Then objects become constituted by the primitives accumulated according

to the robot motion (subtracting the robot hand performing the very same

motion). Since the motion is performed by the robot itself, based on the

robot movements predictions of the change of visual features can be made

and the objects become constituted by these features (see figure 5 and 10A).

4.2. Pose Estimation and Grasp Learning

The accumulated representations have been used for pose estimation in

[4] in a hierarchical Bayesian net (see figure 10B i, ii). The fact that different
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ii) iii) iv)

Frame 5 Frame 10 Frame 15 Frame 20 Frame 25 Frame 30A.

C.i) ii) iii)

B.i)

Figure 10: Applications. A) BoO: Show emerging object over different frames and the

subtraction of gripper. B) Pose Estimation and Grasp Learning: i. Accumulated objects

used for ii. pose estimation; iii. object grasping; and iv. storing of successful grasps. C)

Driver assistance scenario: i. Stereo Image; ii. Outdoor map; and iii. accumulated lane.
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aspects of visual information (position, orientation, and colour) have been

accumulated makes the learned representation in particular powerful for such

matching tasks. Once the matching has been performed successfully, further

learning of grasping can be performed by letting the robot play with the

object (try to grasp and let drop) and successful grasps can become associated

to the accumulated representations (see [18] and figure 10B iii,iv).

4.3. Constructing Maps in Outdoor Environments

The accumulation algorithm has also been used in outdoor environments

in a driver assistance scenario (see figure 10C,i). Here the motion has been

computed based on image correspondences (for details, see, e.g., [25]). In

addition to the confidence described in this paper (see Eq. 38), we accumulate

confidences for a primitive to become associated to a lane extracted from

individual stereo frames according to [2]. In figure 10C)-iii, primitives with

high associated confidences for them to be part of lane markers.

5. Discussion

We presented in this article a framework for the on-line acquisition of

models of objects and scenes subjected to a known motion. The framework

presented makes use of a probabilistic formulation for matching, tracking,

correcting and selecting features for the model. Moreover, we did filter and

correct not only feature position but also orientation and appearance in-

formation. This provides us with a model of object structure based on a

collection of edge descriptors covering geometric and appearance informa-

tion. These extracted models have been used for tasks as diverse as grasping

[26], object learning [19], motion estimation [32] and pose estimation [4].
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Characteristic for our approach is that we accumulate edge information in

terms of an abstracted representation by local multi-modal descriptors cover-

ing geometric and appearance information. In contrast to SLAM application,

we are interested in accumulating aspect information of a large number of

landmarks, and therefore cannot keep correlations between landmarks. This

allowed to maintain a complete representation of the object’s shape, rather

than a subset of selected landmarks. In contrast to SFM approaches, the

system is incremental and on-line, and does not require to memorise the full

trajectory of features. The result is a powerful and rich representation ensur-

ing its general applicability. Another aspect allowing for a flexible use of the

algorithm is the ability to learn models on-line which is required in particular

for robotic applications in which novel views appear in unpredicted ways.

In this work, we assumed that appearance information is unaffected by

motion. Future research may attempt to include in the model the illumina-

tion impact on appearance information. Also the extension of our algorithm

to other feature types (e.g., junctions or patchlets) is straightforward due to

the flexibility of the unscented Kalman filter. For junction structures this

has already been shown in [37].
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N. Kruger. Bayesian reasoning using 3D relations for lane marker de-

tection. Proceedings of VMV 2009, pages 127–134, 2009.

[3] A.J. Davison. Active search for real-time vision. In Proceedings of the

ICCV, volume 1, pages 66–73, 2005.

[4] R. Detry, N. Pugeault, and J. Piater. A probabilistic framework for

3D visual object representation. IEEE transactions on Pattern Analysis

and Machine Intelligence, 31(10):1790–1803, 2009.

[5] P. Dissanayake, P. Newman, H.F. Durrant-Whyte, S. Clark, and

M. Csorba. A solution to the simultaneous localisation and mapping

(SLAM) problem. IEEE Transactions in Robotics and Automation,

17(3):229–241, 2001.

[6] O.D. Faugeras. Three–Dimensional Computer Vision. MIT Press, 1993.

[7] Y. Gu and J. Luh. Dual–number transformation and its application

to robotics. IEEE Journal of Robotics and Automation, 3(6):615–623,

1987.

[8] J.E. Guivant and E.M. Nebot. Optimization of the Simultaneous Lo-

calization and Map–Building Algorithm for Real–Time Implementation.

IEEE Transactions on Robotics and Automation, 17(3):242–257, 2001.

[9] W.R. Hamilton. Lectures on Quaternions. Royal Irish Academy, 1853.

[10] R.I. Hartley and A. Zisserman. Multiple View Geometry in Computer

Vision. Cambridge University Press, 2000.

36



[11] B. Jähne. Digital Image Processing. Springer, 2002.

[12] S.J. Julier, J.K. Uhlmann, and H.F. Durrant-Whyte. A new approach for

the nonlinear transformation of means and covariances in linear filters

and estimators. IEEE Transactions on Automatic Control, 45(3):477–

482, 2000.

[13] R.E. Kalman. A new approach to linear filtering and prediction prob-

lems. Journal of Basic Engineering, 82(Series D):35–45, 1960.
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construction uncertainty and 3d relations. Technical Report 2007 - 6,

Robotics Group, Maersk Institute, University of Southern Denmark,

2007.

[29] N. Pugeault, S. Kalkan, E. Baseski, F. Wörgötter, and N. Krüger. Re-
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[30] N. Pugeault and N. Krüger. Multi–modal matching applied to stereo.

Proceedings of the BMVC 2003, pages 271–280, 2003.

[31] N. Pugeault, K. Pauwels, M. Van Hulle, F. Pilz, and N. Krüger. Multi–
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