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Abstract—In this paper, we apply the attention mechanism
to autonomous driving for steering angle prediction. We propose
the first model, applying the recently introduced sparse attention
mechanism to visual domain, as well as the aggregated extension
for this model. We show the improvement of the proposed
method, comparing to no attention as well as to different types
of attention.

I. INTRODUCTION

Consider a human driving a car on a countryside road.
The driver’s brain is subjected to a continuous flow of large
quantities of visual information, interpreting it in real time
to provide fast, precise and reliable control of the vehicle.
An essential mechanism that allows such an efficient and fast
processing of information is visual attention, which has been
extensively studied by psychologists. Early computational
models of attention, inspired by the seminal work of Itti &
Koch [1], focused on the top-down mechanism that elicit eye
movements when subjects perform a visual search of objects
on images. The aim of such models is to estimate from an
image a so-called saliency map: an estimate of how likely are
the subject’s eyes to look at image locations given the patterns
it contains (see, eg, [2], [3]). Saliency models can either be
engineered based on properties of images, or learnt from eye
tracking records of human subjects. In both case, the quality
of saliency models is estimated by comparing their prediction
with actual eye fixations on dataset of images. Although such
approaches can predict fairly well the eye fixations of human
subjects when asked to perform a visual search task, their
predictiveness is much worse when the subjects are performing
an active task, such as playing video games or driving [4],
[5]. More recently, several groups have proposed to learn
attention not by mimicking the gaze of human subjects, but by
optimising a system’s performance at a specific task [6], [7].
In contrast to saliency, that is purely bottom-up, such models
are explicitly task dependent.

This article proposes a novel attention mechanism for con-
volutional neural networks that is based on learning a task-
specific sparse attention mechanism. In particular, we focus on
the challenging task of predicting steering angle from visual
input only [5]. We demonstrate that such a sparse attention
focusing leads to better performance. Moreover, we provide
experimental evidence that such an attention model is very
sensitive to initial conditions and demonstrate that an ensemble
of sparse attentional models can significantly improve not

Fig. 1: Architecture of the proposed aggregated attention
model.

only the robustness of the learning process, but also overall
performance.

The rest of this article is organised as follows: Section II
reviews the use of attention mechanism in computer vision
as well as steering angle prediction; Section III provides the
detailed methodology used in this work; Experimental results,
together with comparison are presented in Section IV; and
conclusions are drawn in Section V.

II. RELATED WORK

A broad range of attention models have been proposed
over the years in the literature. This article is concerned in
particular with the problem of task-dependent attention, where
the focusing of attention is optimised to improve a system’s
performance at a given task. This is in contrast to saliency
models which are designed to mimic human subjects’ gaze
patterns irrespective of the tasks demands. Existing models of
task-dependent attention for neural networks can be classified
in two groups: soft attention and hard attention.

In soft attention, the visual input is processed by a pre-
trained convolutional neural network, and the output of the
top convolutional layer is encoded by a feature tensor. Soft



attention consists in weighing the feature tensor with an
attention matrix that encodes the relative importance of all
locations in the feature tensor. This weighted tensor is fed to
another network (ie, a fully connected or a recurrent neural
network) to optimise the desired task. The attention matrix is
therefore learnt from the task and normalised using a softmax
function. Li et al [6] used soft attention to develop a multilevel
attention model for video captioning. Their model uses two
attention layers. The first layer models region-level attention,
which encodes the importance of each region in a frame.
The second attention layer models frame-level attention, which
encodes the importance of each frame in a short video. Sharma
et al [7] proposed a soft attention model for action recognition.
In their model, the output of a pre-trained deep convolutional
neural network is fed to a long short-term memory (LSTM)
network to output the action as well as the attention matrix.
Xu et al [8] used soft attention for image captioning. Their
model also uses a LSTM network that generates an attention
matrix at each time step and generating sentences to describe
the input image.

One limitation of soft attention is that it only reweighs
the convolutional features and therefore everything is always
attended to, although not with the same relative importance
(hence soft attention). In contrast, hard attention models only
process part of the input, which is assumed to be the most
important region. Because hard attention is not differentiable,
it is more challenging to optimise. Mnih et al [9] proposes
to learn hard attention from reinforcement learning. There
are two crucial component in their network: The first one
is a glimpse sensor, which can be used to extract a retina-
like representation centred at a given location in the input;
The second component is a glimpse network, it is used
to process the retina-like representation extracted from the
glimpse sensor, and the processed information is then fed
into a recurrent neural network (RNN) which estimates the
attention focus for the glimpse sensor at the next iteration.

This article is especially concerned with active tasks, and
in particular the problem of estimating steering from vision.
Pugeault & Bowden [5] developed a pre-attentive model using
gist [10] and random forests, while the deep network models
are CNN or CNN+ LSTM based, Bojarski et al [11] used
a convolutional neural network to map images to steering
command. Du et al [12] explore two different models for
steering angle prediction. The first is a 3D convolutional model
with residual connections and LSTM cell. The second one uses
transfer learning to fine-tune a pre-trained CNN and predict
steering angles for individual images.

Much less work has been done on the application of atten-
tion mechanism in autonomous driving. In this article: i) we
propose a new sparse attention model, based on the sparsemax
function [13], yields better performance; ii) we demonstrate
that bagging multiple sparse attention models can provide a
significant performance improvement over single models; iii)
we show that the proposed architecture performs better than
the state-of-the-art soft attention model, CNN, CNN+LSTM
for steering angle prediction.

III. REGRESSION OF STEERING ANGLES WITH ATTENTION

This section describes the proposed sparse attention model:
First, we present the overall architecture in Figure 1; we then
describe the LSTM model and sparse attention formulation for
steering regression; and finally, the proposed model aggrega-
tion approach.

A. Feature Extraction
The deep convolutional neural networks have achieved

great success in computer vision due to its ability to learn
hierarchical features. In our model, we extract the feature for
each frame in a driving video using the convolutional part of
VGG16 [14], which was trained for image recognition. After
feature extraction, each frame was represented by a tensor of
shape M ⇥ N ⇥ K determined by the input size. We refer
to feature tensor as a feature cube with M ⇥ N locations,
and each location was represented by a feature vector of K

elements:

X = [X1, X2, · · ·, XM⇥N ] (1)

The feature extraction part is fixed during the experiment and
not fine-tuned.

B. LSTM
In order to take into account the previous context to predict

steering angle, the recurrent neural network was used. Re-
current neural network (RNN) can process the time sequence
by remembering the needed information and forgetting the
redundant. Long Short Term Memory (LSTM) networks [15]
are a kind of gated RNN, which can avoid the gradient
vanishing or exploding problems encountered by standard
RNNs.

C. Sparse Attention
A fundamental limitation of soft attention is that all image

regions are in effect attended to at all times: Their importance
is merely reweighed by the attention model. This is contrary
to the very intent of attention learning.

In this work, we propose to mitigate this limitation by
implementing a sparse attention mechanism based on [13],
but extending it to visual inputs. The output of the attention
transformation is defined as

Xweighted = X ·A, (2)

where the elements of sparse attention matrix A sums to 1,
and it is determined by the feature cube of the current input
frame and the model hidden state in the last time step and
normalised by the sparsemax function:

A = sparsemax(tanh(WfX +WhH + b)) (3)

where the Wf is weight for the current input frame’s feature,
Wh is the weight for the model hidden state, H is the hidden
state of the model, both of the weights are learned during
training to form the attention matrix, the sparsemax function
which is defined by [13] in Algorithm 1.



Algorithm 1 sparsemax
Input : z
Sort z(1) � · · · � z(M⇥N)

Find k(z) := max { k 2 [M ⇥N ] |1 + kz(k) >
P

jk z(j) }

Define ⌧(z) =
(
P

jk(z)
z(j))�1

k(z)

Output : p s.t. pi = [zi � ⌧(z)]+

One can see that the sparsemax function is not continuous.
More importantly, compared to the softmax function, it has the
ability to inhibit the unimportant but enhance the significant
elements of the input [13]. The final prediction is generated
by a two layer fully connected layers (FCN):

S(t) = Wfcn2(Wfcn1Ht + bfcn1) + bfcn2 (4)

where, S(t) is the predicted steering angle, Wfcn1 and Wfcn2

are the weights of each fully connected layer, bfcn1 and bfcn2

are the bias of each layer, and Ht is the output of LSTM.

D. Model Aggregation
Due to the non-continuity of the sparsemax function, we

suggest that the result of training a sparse attention model
is highly dependent on (random) initialisation. This means
that the resulting attention models after training, although
converging to similar performance levels, correspond to very
different local minima depending on the random initialisation.
In other words, the same task can afford multiple attention
models of similar quality. If those models all capture different
aspects of the task, a combination of those models could
lead to better performance. Therefore, we propose to train
a collection of N (we choose N = 3 in the experiment)
randomised attention models. Because model variance can be
ensured from the random initialisation, we can train them all
using the same dataset (experiments confirmed that training
each model on a separate bootstrap samples did not alter the
results significantly). At inference time we propose to combine
these attention models and average their predictions, similarly
to model bagging.

IV. EXPERIMENTAL RESULTS

The advantages of the proposed method are shown using
DIPLECS dataset [5], containing indoor and outdoor scenar-
ios, and Comma.ai dataset [16]. The proposed method is com-
pared to soft attention and aggregated soft attention (ASA).
Also the method is compared to the gist-based approach [5],
method with no attention and no LSTM (CNN), as well
as LSTM without attention (CNN+LSTM). To measure the
prediction quality, we use the mean absolute error.

A. Dataset description
The indoor part of the DIPLECS dataset [5] is collected

using a radio controlled car (see Figure 2, left). There are
two tracks, P-shaped and O-shaped, eight recordings for each
of them from different starting point. For each of the tracks,
three recordings are used for training, one for validation, and
the rest for testing.

The outdoor part of the DIPLECS dataset [5] contains real
world driving scenarios (see Figure 2, middle), totalling about
47 minutes of driving, or 84, 690 frames. This dataset has
been divided into eight subsequences of the same length,
with junctions removed as causing ambiguity which cannot
be resolved using vision-based information. Six subsequences
were used to train the model, another two were used for
validation and testing. In order to factor out focusing attention
on the steering wheel and the mirror, these regions were
cropped.

Comma.ai dataset consists of 10 day- and night-time high-
way driving video clips of variable size, in total 7.5 hours (see
Figure 2, right). We extract 8 sequences from the dataset, each
of them contains 4000 frames, and use 6 of them to train and
the rest for validating and testing.

B. Training parameters

Our models are trained using Tensorflow [17] with the L
1

norm loss function, we set the learning rate as 10�4 and use
Adam [18] optimisation method to train the model, all weights
to be trained in the model are initialised using Xavier [19]
initialisation method.

C. Indoor Dataset Results

In the indoor dataset, the remote control steering angle sig-
nal was normalised to [�1, 1] (�1 corresponds to the leftmost
and 1 to the rightmost angle). In Figures 4, we can see that the
steering regression improves with the addition of any attention
mechanism. Also, sparse attention performs better than soft
attention, and the proposed aggregated sparse attention model
performs best among those models. Importantly, we note that
the models with attention provide a steering control that is
not only more accurate but also smoother, which may be
favourable for control applications. This particularly true for
the proposed model. Figure 5 shows the attention maps for
soft and sparse attention respectively. Note that the attended
regions for most models appear to be focused on the road
markings, some of them on the boundary marking or on the
central one and some of them on both. We note also that the
attention map for sparse attention is sparser than soft attention,
which was the purpose of using the sparsemax function.

D. Outdoor Dataset Results

In practice, a driver’s actions are not instantaneous: due to
reaction time, the driver’s actions at any instant t are based
on the visual input received some time before. According to
the studies in [20], [21], a driver’s reaction time can vary
from a few hundred milliseconds to several seconds. Before
this section, we were predicting just the steering angle for
the current frame (s(t) = f(i(t))). Here we use the current
frame to predict the steering angle for different time delays
(s(t + d) = f(i(t)). We choose the delays corresponding to
0s, 0.25s, 0.5s, 0.75s, 1s, and compare the results for different
attention models.

One can see from Figure 7 that the proposed aggregated
sparse attention model achieves the best performance among



Fig. 2: The datasets used in this article: left, the DIPLECS indoor dataset (figure reproduced from [5]); middle, the DIPLECS
outdoor dataset (figure reproduced from [5]; right, the Comma.ai dataset [16].

(a) CNN (b) CNN+LSTM (c) Soft attention (d) ASA (e) Proposed method

Fig. 3: Steering angle prediction of different method in one recordings of the indoor dataset.

Fig. 4: The mean error of different methods in the DIPLECS
indoor dataset (left),and the mean error of each single predictor
and aggregated predictor for sparse and soft attention in
DIPLECS indoor dataset (right).

Fig. 5: The attention map for soft attention (left) and sparse
attention (right) in DIPLECTS indoor dataset

all methods with 0.5s time delay, which is also the minimum
mean error for all time delay among all methods. All models,
which have an attention mechanism, perform much better
than those without attention, and Figure 6 shows that the
model with attention mechanism is more stable, with less
perturbation for steering angle prediction, than the model

without attention. Figures 8 and 9, show the area of the visual
field where attention is focused, for selected frames. Each
single attention map only focus on a few different areas (the
bright parts). Initially, attended locations are mostly at the
bottom of the screen, but when time delay increases, we start
seeing locations higher in the image being attended—this is
especially visible for prediction time delay of 0.25s and 0.5s.

It is also remarkable that in Figures 10, even though every
single predictor within the aggregated sparse attention is
trained using the same dataset, the aggregated model performs
better than any single sparse attention predictor. For the ag-
gregated soft attention model, two varieties of the model were
compared: each single model within the aggregation has been
trained on the same training set (ASA) or on different random
subsets (ASAR). After model aggregation, the aggregated soft
attention model performed worse than the single soft attention
model for time delays 0.25 s,0.5 s. We suggest this is due
to the cross-correlation between the attention maps of each
single soft attention predictor. In Figure 11, one can see that
there is a high correlation between the attention maps; even the
smallest correlation coefficient of the soft attention map pairs
is larger than the largest correlation coefficient for the sparse
attention map, which suggests those soft attention models tend
to focus on more or less the same region. In this case, if a
single predictor model over- or underestimates the steering
angle at some time, the other correlated predictors would also
have the same trend in steering angle estimation, and after
model aggregation it would negatively impact the final error.
This result also confirms our suggestion about diversity of
individual sparse attention maps, made in section III-D.



(a) CNN+LSTM (b) Soft attention (c) ASA (d) ASAR (e) Proposed method

Fig. 6: Predicting the steering angle 0.5 seconds later, by different methods for a subsequence of the DIPLECS outdoor testing
dataset, the blue curve is the ground truth and the red one is the predicted steering angle.

Fig. 7: The mean regression error of different attention models
on the DIPLECS outdoor testing dataset, for different time
delay.

Delay Attention map1 Attention map2 Attention map3

0.25 s

0.5 s

Fig. 8: Attention maps for 0.25s and 0.5s delays of each single
sparse predictor

E. Comma.ai Dataset

The testing procedure for Comma.ai dataset is the same as
for DIPLECS outdoor dataset. One can see from Figure 12, 13
that the proposed aggregated sparse attention model still
achieves the best performance among all methods, but for
different time delay (1s time delay), we suggest that this is
due to the driving environment being a highway with a broad
view far ahead of the car, and therefore possibly requiring
less attention from the driver than the countryside road in the
DIPLECS outdoor dataset. On this dataset as previously, all
models with attention mechanism perform much better than
models without attention. Also, Figure 14 (left) confirms, as
was the case with the DIPLECS outdoor dataset, that even

(a) 0s delay (b) 0.25s delay (c) 0.5s delay

Fig. 9: The input frame overlapped by the attention map for
different time delay.

Fig. 10: The mean error of each single predictor as well as
aggregated predictor for different time delay of sparse (left)
and soft(right) attention in DIPLECS outdoor dataset.

(a) Soft attention (b) Sparse attention

Fig. 11: The cross correlation between the attention map of
each single attention model for aggregated sparse attention
model and aggregated soft attention model with 0.5s time
delay.

though every single predictor within the aggregated sparse at-
tention is trained using the same dataset, the aggregated model
performs significantly better than any single sparse attention
predictor. The performance improvement from attention model
aggregation is less evident when considering soft attention, as
shown in Figure 14 (right).

V. CONCLUSION

Attention plays an essential role in human driving. This
article experiments with existing neural network models for
task-directed attention, and proposed improved models the task
of steering a car autonomously. Our experiments show that: i)
all attention models improve steering prediction significantly;
ii) a sparse attention model yields better performance than
classical soft attention; and iii) an aggregated ensemble based
on randomised attention models can achieve significantly
better performances than a single attention model, even when



(a) CNN+LSTM (b) Soft attention (c) ASA (d) ASAR (e) Proposed method

Fig. 12: Predicting the steering angle 1 seconds later, by different methods for a subsequence of the Comma.ai testing dataset,
the blue curve is the ground truth and the red one is the predicted steering angle.

Fig. 13: The mean error of different methods for different time
delay in Comma.ai dataset.

Fig. 14: The mean error of each single predictor as well as
aggregated predictor for different time delay of sparse (left)
and soft (right) attention in Comma.ai dataset.

trained on the same data. The method has been assessed in
a variety of scenarios on three datasets, and achieves better
performance than state-of-the-art. Additionally, as was done
in previous published works the problem of steering angle
prediction with a perception-action delay has been considered,
demonstrating that the model achieves the best performance
for 0.5s delay for countryside road and 1s delay for a highway.
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