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Abstract

This article proposes an approach to learning steer-
ing and road following behaviour from a human driver
using holistic visual features. We use a random forest
(RF) to regress a mapping between these features and
the driver’s actions, and propose an alternative to clas-
sical random forest regression based on the Medoid (RF-
Medoid), that reduces the underestimation of extreme con-
trol values. We compare prediction performance using dif-
ferent holistic visual descriptors: GIST, Channel-GIST (C-
GIST) and Pyramidal-HOG (P-HOG). The proposed meth-
ods are evaluated on two different datasets: predicting
human behaviour on countryside roads and also for au-
tonomous control of a robot on an indoor track. We show
that 1) C-GIST leads to the best predictions on both se-
quences, and 2) RF-Medoid leads to a better estimation of
extreme values, where a classical RF tends to under-steer.
We use around 10% of the data for training and show excel-
lent generalization over a dataset of thousands of images.
Importantly, we do not engineer the solution but instead use
machine learning to automatically identify the relationship
between visual features and behaviour, providing an effi-
cient, generic solution to autonomous control.

1. Introduction

This article attempts to learn steering and road following
behaviour by observing a human driver. We learn a mapping
between generic, holistic visual features, and the driver’s
corresponding actions. In contrast to typical road follow-
ing approaches, we do not endow the system with any do-
main knowledge or problem specific features: relevant fea-
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tures are learnt from their predictive association with the
driver’s actions. We show that random forests allow us to
regress a mapping between holistic visual features and the
driver’s steering, and show good prediction capabilities—
sufficiently accurate for autonomous control of a robot plat-
form.

Research in autonomous driving reaches back as far as
the 70’s [13, 6, 3], culminating in some impressive suc-
cesses in the last decade (e.g., the Stanley robot [22])—we
refer to Markelic [12] for a review. Classical approaches
to the autonomous driving problem are based on classical
control theory [5, 25, 22], and rely on the extraction of high
level features (typically road lanes and markings) and mod-
els of the car and road. In contrast, machine learning ap-
proaches attempt to learn driving behaviour by associating
a driver’s actions to current visual percepts. One prominent
example is ALVINN (Autonomous Land Vehicle in a Neu-
ral Network), where raw pixel intensity from a downscaled
version of the image were used as input to a neural net-
work that learnt associated steering actions [15, 16]. This
system controlled Carnegie Mellon’s NavLab system on a
highway over a distance of 35 km (22 miles), and at a speed
of 90km/h (55mph).

The visual features we use in this article are generic,
holistic representations of the visual perceptual domain,
called visual gist. Gist features are called ‘holistic’ be-
cause they encode the whole visual field in one vector, in
contrast to local feature descriptors (e.g., SIFT [11]) that
describe sparse interest points or regions. The first intro-
duction of visual gist in the computer vision literature dates
from Oliva & Torralba [14], who proposed to describe an
image in a holistic fashion by its Fourier components. Their
original paper compared a fully global descriptor with a
coarsely localised descriptor based on a windowed discrete
Fourier transform, used to define a set of perceptual proper-
ties (roughness, ruggedness, etc.) used for visual scene clas-
sification. Such holistic features, so-called visual gist have
since received a significant amount of interest, and later
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publications feature a variety of implementations, based on
steerable [23, 24] or Gabor wavelets [20], computed over
different scales and orientations, and averaged over image
grids of different size and granularity. In addition, the di-
mension of the resulting feature vector was in some cases
reduced using PCA and/or ICA [19, 20]. GIST features
have been used for a variety of tasks: Renninger & Ma-
lik [19] proposed a GIST model to explain human subjects’
rapid scene identification (after exposure of less than 70ms).
Douze et al. compared GIST with bag-of-words approaches
for image searching [7]. Siagan & Itti, used similar de-
scriptors for the identification of indoor and outdoor scenes
in a mobile robotics context [20, 21]. Kastner et al. [9]
use a GIST variant for road type context detection, limited
to the three categories ‘highway’, ‘country road’ and ‘in-
ner city’; their main contribution was the hierarchical prin-
cipal component classification (HPCC). Pugeault & Bow-
den [17] used GIST to detect driving relevant events and
predict driver’s actions, showing that a large proportion of
a driver’s actions could be predicted from GIST features
alone. Note that this article only considered action cate-
gorization, whereas we tackle the much more difficult prob-
lem of regressing the actual steering angle to drive along the
road.

From previous work, the most similar to this article is
the article by Ackerman & Itti [ 1], who trained a neural net-
work with gist-like features based on spectral image infor-
mation to steer a robot autonomously on two simple tracks
(a racing track and a campus road), at low speed (8km/h or
Smph), comparing global versus coarsely localized descrip-
tors. In the present work, we go further in doing full re-
gression of the steering angles in realistic navigation tasks,
which feature narrow tracks and sharp (up to 90 degrees)
turns, navigated at natural speed (i.e., the speed of a human
driver). Therefore the accuracy of the regressed steering
is crucial to a successful navigation as there is no margin
to correct from steering mistakes. This is demonstrated on
two challenging scenarios: the first, recorded indoors, fea-
tures very sharp corners (90 degrees), and has been assessed
by letting the system drive autonomously using the learned
percept-action associations; the second features sharp turns
on a countryside road at speeds above 50km/h (30 mph),
on roads featuring a large amount of variability in terms of
road width, texture, and visibility (or even presence) of lane
markings. As the proposed approach is not engineered, it
does not rely on specific features like lane markings (al-
though it makes use of them when present), but rather au-
tomatically selects predictive visual features. This allows
excellent performance on the second scenario, that contains
a large variability in terms of road size and presence of the
road markings, where an engineered system would simply
fail.
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Figure 1. Illustration of the GIST extraction process.

2. Holistic visual features

Holistic visual features, also called visual gist, were
introduced by Oliva & Torralba [14], who demonstrated
that it could be used to encode visual context. They have
shown good performance for scene context detection [9],
outdoor/indoor classification [20], path following [1], driv-
ing action prediction [17], and target detection in satellite
images [10]. In this article, we will compare two versions
of the GIST with a Pyramidal HOG implementation, ap-
plied to the autonomous control of vehicles.

2.1. GIST

There exists several versions of GIST in the literature,
e.g., [14, 20, 9]. In this work we extract GIST by convolv-
ing a downscaled (to 128 x 128) version of the image with
a bank of Gabor filters at 4 scales an 8 orientations, and av-
erage the responses over a coarse (8 x 8, or 24 x 8 for wide
images) grid laid over the image (see Fig. 1). This leads to
a vector of dimension 2048 (6144 for wide images). Some
versions of the GIST follow with PCA and/or ICA [20]. In
this work we will dispense with this dimensional reduction
as we use random forests for learning, and they can handle
large input dimensionality efficiently, and effectively per-
form automatic dimension selection.

2.2. Channel GIST (C-GIST)

Channel GIST was proposed by [17] for driver’s action
categorization, and replace the uniform averaging of the fil-
ter responses over grid cells by overlapping Gaussian chan-
nels (see Fig. 1b). For ¢ x r channels on an image w X h,
each channel is defined as:
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where (cg, ¢, ) is the channel’s position, o, = 5% and o, =
% are the channel’s width. Jonsson & Felsberg previously
discussed the advantages of channels over histograms in [&].
This formulation has been reported to yield better results

than classical GIST for category prediction [17].

2.3. Pyramidal Histogram of Gradients (P-HOG)

GIST features exhibit similarities with Histogram of
Gradients descriptors [4], applied to a whole image. In this
article we will compare regression performance when using
GIST and HOG descriptors. In order to ensure that both
descriptors are comparable, we computed the HOGs on a
Gaussian pyramid built on the original image, leading to 4
scales and 8 orientation bins. Also, the HOGs were com-
puted on similar grids as used for the GIST computation,
leading to a very similar feature vector. We call this de-
scriptor Pyramidal Histogram of Gradients (P-HOG). One
essential advantage of this descriptor, is that it is faster to
compute than GIST, as it does not involve convolving the
image with a full bank of filters.

3. Random Forest regression

In this article, we attempt to regress a driver’s steering
actions when following a road from visual gist. The driver’s
steering actions are regressed using Random Forests (RF).
Random Forests, introduced by Breiman [2], are discrimi-
native predictors that belong to the group of ensemble pre-
dictors, and bear similarity to bagging predictors. Essen-
tially, the idea is that a collection of randomized regression
trees can provide a better prediction than one single, large
tree. Random forests have become popular for a range of
classification problems, as they can be trained very quickly.
Furthermore, because the training of the constitutive trees is
independent, this training can be efficiently parallelized.

In the results section, we will show that classical ran-
dom forest regression performs poorly when learning the
steering function, where outliers lead to considerable under-
steering. We propose one alternative to allay this problem:
RF-Medoid.

3.1. RF-Mean

There exists a number of versions of the Random Forest
classifier/regression, that vary on details of the tree random-
ization procedure or split evaluation. In this work, we use
a formulation close to the one originally proposed in [2],
that we describe briefly below, with adaptations that specifi-
cally address under-prediction that is a result of noise during
training. Formally, all M training samples are pairs (z,y)
that contain one input vector x, and one target vector y (to
be estimated). In our case, the input vector is the visual
gist, and the target vector the vehicle’s control. Each of the
N trees is trained using a random subset of AM samples

(we used A = 0.5), and each node splits the dataset in the
input space. A random number (o = 100) of splits are com-
puted along a random subset (' = log, D, as suggested in
[2]) of the D input dimensions, and the split minimizing the
variance on both sides is chosen. The end criterion is when
the maximum tree depth is reached (8 = 20).

Each leaf of a tree ¢ is associated a value that is the mean
of the my; ; samples that belong to it:
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where ¥, ; ;. denotes each of the m; ; samples that fall in
leaf j for tree t. For a given input vector x, we write I (z)
the one active leaf in tree ¢.

Finally, for each input vector, the predicted value for the
whole forest is obtained by computing the mean over all
activated leaves:
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3.2. RF-Medoid

The classical RF-regression, applied to learning a
driver’s steering, consistently under-predicts steering an-
gles, which can cause an autonomous system to react to
little and to late to bends in the road.

One explanation for this problem comes from the aver-
aging of activated tree leaves across the forest in Eq. (3);
this averaging will tend to erode extremal values. Second,
the mean is known to be sensitive to outliers, and therefore
one single tree regressing a completely erroneous value will
cause a large error in the final value. For this reason, we pro-
pose an alternative method based on computing the Medoid
of all samples stored in the activated leaves of all trees. In
mathematical terms, we replace Eqgs. (2) and (3) by:
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where S(l; ;) = {y;k|lk < my;} is the ensemble of all
samples that fall in leaf [, ; for tree t. We demonstrate in
the following that this approach reduces considerably the
under-steering issue.

G(z) = argmin

3.3. Forest activation

One advantage of regression trees is that they are inter-
pretable: each non-leaf node in the tree corresponds to a de-
cision on one input variable. In [17], such an activation was
used in the context of boosted tree stumps to illustrate loca-
tions in the visual field that contained events related to the
detector’s prediction. We extend this approach to the case



of random forests such that each tree leaf is associated a po-
tential vector p of the same dimension as the input, where
each entry p; records the proportion of this node’s ancestors
that splits on this dimension ;.

Therefore, the unnormalized potential p(n) of a node n
is given by the recursive formula:

pi(n) = di(n) + pi(n’), (5

for all input dimensions ¢ where n’ is the tree node that is
parent to n, and d;(n) is 1 if the node n splits along dimen-
sion %, zero otherwise. The normalized potential of a leaf
node [ is given by:
p(l)
l)=—% 6
p(l) D(l)’ (6)

where D(1) is the depth of the node [ in the tree.

The total activation of the forest is then calculated as the
mean potential of all active leafs:
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This measure offers a practical way to visualize the rel-
ative importance of input dimensions when regressing for
a given input vector, and therefore the spatial localization
of the information used by the predictor—as is shown in
Figs. 8 and 9 for two sequences discussed in this paper.

4. Datasets

We evaluate our approach on two very different scenar-
ios, using the same holistic visual features and the same
learning process. The first dataset (described in section 4.1)
is an indoor track featuring 90 degrees corners, where the il-
lumination is constant and the road markings are clear. Data
was recorded by driving a remote controlled car around the
track. The second dataset (described in section 4.2) was
recorded from real car driving on narrow countryside roads,
using an on-board high-resolution camera. In this scenario,
the illumination is uncontrolled, the road markings are faint
and sometimes absent and the road width is variable. An-
other difference between the two scenarios comes from the
resolution of the visual input. Due to the different aspect ra-
tio of the field of view in the real car scenario, we use image
grids of difference sizes (see Table 1).

4.1. Dataset A: Indoor test track

The first set of data we considered was collected using
a standard remote controlled car (RC-car) equipped with a
camera, and driven on an indoor track. The custom track is
delimited by white lines, and features sharp 90 degrees turn.
In order for the system to have a suitable view of where it
is heading in such tight corners, we mounted the camera

(a) mobile platform

i

(b) rotating cam.

(c) cam. view

Figure 2. Illustration of the mobile platform used for autonomous
control. The platform is a) a standard issue remote controlled car
fitted with a laptop and b) a camera rotating in sync. with the
steering of the wheels (green field of view), offering c) a better
view of the path ahead in tight corners.

on a rotating base aligning the camera to the car’s wheels
(see Fig. 2). The video was recorded at 15 frames per sec-
ond. This scenario offered safe conditions for autonomous
control of the car using the control function learned by the
system.

The training data was obtained by having a human driv-
ing the car around the track, and recording the control sig-
nals along with the images. The predictor was trained using
1000 frames and evaluated on a further 9000. Furthermore,
this controlled scenario allowed us to assess the learnt asso-
ciations by autonomously controlling the car using the pre-
dicted steering values. The throttle signal was kept constant
on this scenario for safety (as acceleration in a closed room
could easily damage the car).

4.2. Dataset B: Outdoor countryside roads

The second set of data was recorded by driving a real car
with a high resolution camera, in narrow countryside roads.
This dataset features a large amount of variability in the vi-
sual domain. In particular, the road width and texture vary
to a large extent, and the road markings are faint, sometimes
obfuscated by reflections, and other times just absent. The
absence and unreliability of basic features would cause un-
surpassable challenges for engineered systems that rely on
them.

The video was recorded at 29 frames per second, and
the camera’s field of view (Fig. 3a) covered the driver’s
view of the road ahead (Fig. 3b), as well as the odometer
(see Fig. 3c) and steering wheel (Fig. 3d). We extracted
speed information from the car’s digital odometer by train-
ing a simple colour-based digit detector based on an random
forest multi-class classifier. Steering information was ex-



dataset ‘ image size  downscaled to feat. dim. frames training autonomous
indoor (DSA) 1280 x 960 128 x 128 8x8 2048 9918 1000 ( 10%) yes
countryside (DSB) | 1497 x 423 450 x 200 24 x 8 6144 22462 2000 (9%) no

Table 1. Differences between the two datasets.

b) front view

d) steering wheel

c) odometer

Figure 3. Illustration of the extraction of the field of view and
control parameters from high resolution images taken from inside
a car: a) original high resolution image; b) field of view used for
prediction; c) digital odometer readings provide a speed estimate;
and d) tracking markers on the steering wheel provide a steering
estimate.

tracted by tracking markers set on the car’s steering wheel
(Fig. 3d). The predictor was trained using 2000 frames from
the dataset and evaluated on a further 20000.

5. Results & Discussion

In this section we compare the performance on driver’s
steering regression using all three holistic features and both
forms of random forest, on the two datasets described
above. Performance on the indoor dataset are recorded in
Figs. 4a and 5, and on the countryside dataset in Figs. 4b
and 6. Last, we discuss what parts of the visual scenes and
features were learnt by the system and used to predict the
driver’s steering using activation maps in Figs 8 and 9.

For the indoor dataset (section 4.1), the steering func-
tions regressed using P-HOG, GIST and C-GIST are illus-
trated in Fig. 4(a), for different numbers of regression trees
in the random forests. P-HOG is shown to perform con-
siderably worse than the two GIST alternatives, as was ex-
pected by the coarsest encoding of orientation. GIST and
C-GIST both show better performance, with a slightly bet-
ter performance for C-CGIST. In all cases, the use of RF-
Medoid regression lead to a major performance improve-
ment compared to classical RF-mean (about 10% error re-
duction).

Regression of steering parameters

Steering angle (radians)

0 200 400 600 800 1000
frame

(a) RF-mean

Regression of steering parameters
0.8 T

T
I Driver
06 - i C-GIST-RF-Med

| ‘ GIST-RF-Med
0.4 ‘ ‘ P-HOG-RF-Med

Steering angle (radians)

frame

(b) RF-Medoid
Figure 5. Illustration of the regressed steering function for the
different visual features, for the indoor dataset (A) over a subset of
1000 frames: a) using standard RF-mean (mean of forest leaves)
regression; and b) using RF-Med (Medoid of training samples in
leaves) regression. The steering angles are given in radians.

A more qualitative idea of the quality of the regressed
steering function achieved for 100 trees can be seen in Fig 5,
which shows the regressed steering function for a subset
of the data (only 1000 frames are shown), for a) standard
RF-mean, and b) RF-Medoid. All predicted functions show
some amount of under-steering, but the severity is consider-
ably reduced by RF-Medoid as shown in Fig 5b. Although
minor in appearance, this under-steering was sufficient to
prevent autonomous control from following narrow turns
(although it was sufficient for navigating straight roads) and
staying on track. In contrast, both GIST-RF-Med and C-
GIST-RF-Med were capable of following the path and driv-
ing autonomously around the track (as demonstrated in the
video [18]).

For the countryside road dataset (section 4.2), Fig. 6
records the regressed control signals for a small subset of
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Figure 6. Illustration of the regression performance of the dif-
ference methods for the countryside dataset (B), over a subset of
2000 frames: a) using standard RF-mean (mean of forest leaves)
regression; and b) using RF-Med (Medoid of training samples in
leaves) regression. The steering angles are given in radians, and all
curves have been post-processed using a 5-points moving average
to improve readability.

the data, using the different visual descriptors and regres-
sion methods. There again, the P-HOG prediction per-
forms considerably worse than both GIST implementations
(and even worse for P-HOG-RF-Med). RF-Mean tends to

03
DSA (RC) —
\ DSB (real) "

0 \ —
AN
s
£ \ A
- e
: ol
3

02| 1
g V7
@
2
%
c
g
[
£

01 ‘ .

500 1000 2000 5000

nb. samples

Figure 7. Impact of the number of training samples on the regres-
sion performance (100 trees, C-GIST, RF-Med).

significantly underestimate extreme steering values; with
RF-Medoid, the increase in performance of C-GIST be-
comes more significant, reducing considerably the problem-
atic under-steering.

Fig. 7 shows the influence of the number of training sam-
ples used on the steering regression accuracy. It appears that
best performance is reached for both sequences for about
10% of the available data after which some overfitting oc-
curs. This is likely to be due to the fact that because the
dataset is based on continuous videos, it is expected to have
near duplicates. In the case of dataset A (RC car), accuracy
decreases quickly with more training samples. This can be
explained by the fact that the human driver’s trajectory was
more noisy in dataset A than in dataset B, and therefore
overfitting has a more severe impact.

Overall, the results show consistently best performance
for C-GIST compared to classical GIST, especially on diffi-
cult data. This is thought to be a consequence of the insta-
bility in GIST responses to visual features located close to
the grid’s boundaries which is alleviated by using smooth,
overlapping channels. The lower performance of the HOG
is likely to be due to the coarser encoding of local orienta-
tion. This issue comes with the advantage of a considerably



method ‘ Aerr. (rad/deg) B err. (rad/deg) fps (A/B)

GIST 0.228/13.1° 0.126/7.2° 10/4
C-GIST | 0.222/12.7° 0.116/ 6.6° 8/1
P-HOG | 0.305/17.5°  0.187/10.714° 12.5/6

Table 2. Summary of the performance for the different meth-
ods, using RF-Medoid and 100 random trees. A refers to indoor
dataset (section 4.1), and B to countryside dataset (section 4.2).
The fps were computed on an Intel Core i5 M430 at 2.27GHz, on
an Ubuntu 10.10 system.

Figure 8. Activation maps for control regression on the indoor
track. Locations in the visual field that were considered when pre-
dicting the control value are highlighted in red.

smaller computational cost.

Also, the experiments showed a limitation of classical
RF regression, where the mean operation computed over all
regression trees in the forest, lead to a serious underestima-
tion of extreme values in the target function. Theoretically,
this effect would disappear if the number and depth of trees,
and the number of training samples increased significantly,
but this is not a practical solution in such a difficult prob-
lem. Using the Medoid is a cheaper alternative that allows
considerable reduction in underestimation, and is sufficient
to provide autonomous control.

One advantage of random forests is that they allow the
extraction of the feature combinations in the input space
that lead to the current prediction. We extracted this acti-
vation as discussed in 3.3, and overlayed the most active
regions in the visual field over the current image. This is
displayed in Figs. 8 (indoor sequence) and 9 (countryside
road). For the indoor sequence, visual features relevant for
steering are clearly delimited by the white lines, and Fig. 8
shows that the forest learnt to rely on these (see also the
first part of the video [18]). In the second dataset, the task
is considerably more complex, as there is a large amount
of variability in the road layout and markings. Regardless,
Fig. 9 shows clear activation patterns on the road edges: (a)
shows a slight right bend, and activation is located on the
left edge of the road, and on the inner bend on the right
side of the road; (b) shows a slight left bend, and activation
on the dashed lines in the middle of the road, and again on
the inner bend of the road ahead; (c) shows a slight right
bend, and activation on the inner bend on the right side; (d)
shows sharp left bend, and activation on the road markings
in the centre of the road and ahead where the road turns;
and finally (e) shows a sharp left bend again, with activa-

This sequence was recorded in Great Britain, and therefore the car was
driving on the left side of the road.

tion along the inner bend on left side of the road and on the
dashed lines in the middle of the road. More examples are
visible in the second part of the video [18].

These results show that the same gist-based imitation
learning system that learnt to detect road markings and use
them to drive around sharp bends of the road extends well
to more complex dataset where the road conditions are vari-
able and markings are less visible or even absent, and makes
uses of available features to predict a good approximation
of the driver’s steering action. This is in contrast to engi-
neered approaches that rely fully on the presence of road
markings and the correct extraction of relevant features.

6. Summary & conclusions

In this article we presented an approach for learning
steering behaviour from observing a human driver, forming
a perception-action mapping that allowed an autonomous
car to steer around sharp bends and stay on a path.

In contrast to typical approaches that rely on engineered
solutions and hand-crafted visual features, we based our
approach on generic, holistic visual features called visual
gist, and learnt relevant patterns of this feature directly
from their predictive association with the driver’s actions.
This allowed the proposed method to perform on difficult
dataset that contains large variability in the road layout, and
where typical features such as road markings were barely
visible or even absent. We showed that a good approx-
imation of the steering function could be achieved, both
on an indoor track featuring narrow turns, and on a coun-
tryside road, using only 10% of the available data, which
shows excellent generalization. Moreover, the learnt system
was demonstrated to be capable of steering autonomously a
mobile robot around the indoor test track. We compared
different implementations of the visual gist, and showed
that overlapping Gaussian channels (C-GIST) lead to better
action prediction than classical grid-based GIST, and that
HOG lead to considerably lower performance. Also, we
have shown that classical mean combination of the regres-
sion tree results in a random forest lead to a considerable
under-estimation of extreme values of the control function.
This can be addressed by replacing the mean operator by a
Medoid over all trees.
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