
Continuous Control with a Combination of
Supervised and Reinforcement Learning

Dmitry Kangin and Nicolas Pugeault
Computer Science Department,

University of Exeter
Exeter EX4 4QF, UK

{d.kangin, n.pugeault}@exeter.ac.uk

Abstract—Reinforcement learning methods have recently
achieved impressive results on a wide range of control problems.
However, especially with complex inputs, they still require an
extensive amount of training data in order to converge to a
meaningful solution. This limits their applicability to complex
input spaces such as video signals, and makes them impractical
for use in complex real world problems, including many of those
for video based control. Supervised learning, on the contrary, is
capable of learning on a relatively limited number of samples,
but relies on arbitrary hand-labelling of data rather than task-
derived reward functions, and hence do not yield independent
control policies. In this article we propose a novel, model-
free approach, which uses a combination of reinforcement and
supervised learning for autonomous control and paves the way
towards policy based control in real world environments. We
use SpeedDreams/TORCS video game to demonstrate that our
approach requires much less samples (hundreds of thousands
against millions or tens of millions) comparing to the state-of-the-
art reinforcement learning techniques on similar data, and at the
same time overcomes both supervised and reinforcement learning
approaches in terms of quality. Additionally, we demonstrate
applicability of the method to MuJoCo control problems.

I. INTRODUCTION

Recently published reinforcement learning approaches [1],
[2], [3] have achieved significant improvements in solving
complex control problems such as vision-based control. They
can define control policies from scratch, without mimicking
any other control signals. Instead, reward functions are used to
formulate criteria for control behaviour optimisation. However,
the problem with these methods is that in order to explore the
control space and find the appropriate actions, even the most
recent state-of-the-art methods require several tens of millions
of steps before convergence [1], [4].

One of the first attempts to combine reinforcement and
supervised learning can be attributed to [5]. Recently proposed
supervised methods for continuous control problems, like [6],
are known to rapidly converge, however they do not provide
independent policies. Contrary to many classification or re-
gression problems, where there exists a definitive ground truth,
as it is presented in [7], [8], for many control problems an
infinitely large number of control policies may be appropriate.

Dmitry Kangin & Nicolas Pugeault. Continuous Control with a Com-
bination of Supervised and Reinforcement Learning. In Proceedings
of the 2018 International Joint Conference on Neural Networks. doi:
10.1109/IJCNN.2018.8489702. c©IEEE 2018.

In autonomous driving problems, for example, there is no
single correct steering angle for every moment of time as
different trajectories can be appropriate. However, a whole
control sequence can be assessed according to objective mea-
sures: for example, by the average speed, time for completing
a lap in a race, or other appropriate criteria. This situation is
the same for other control problems connected with robotics,
including walking [9] and balancing [10] robots, as well as in
many others [11]. In these problems, also usually exist some
criteria for assessment (for example, time spent to pass the
challenge), which would help to assess how desirable these
control actions are.

The problem becomes even more challenging if the results
are dependent on the sequence of previous observations [12],
e.g. because of dynamic nature of the problem involving speed
or acceleration, or the difference between the current and the
previous control signal.

In many real world problems, it is possible to combine
reinforcement and supervised learning. For the problem of
autonomous driving, it is often possible to provide parallel
signals of the autopilot which could be used to restrict the
reinforcement learning solutions towards the sensible subsets
of control actions. Similar things can also be done for robotic
control. Such real world models can be analytical, or trained
by machine learning techniques, and may use some other
sensors, which are capable to provide alternative information
which enables to build the reference model (e.g., the model
trained on LiDAR data can be used to train the vision based
model). However, although there were some works using
partially labelled datasets within the reinforcement learning
framework [13], as far as we believe, the proposed prob-
lem statement, injecting supervised data into reinforcement
learning using regularisation of Q-functions, is different from
the ones published before. In [13], the authors consider the
problem of robotic control which does not involve video data,
and their approach considers sharing the replay buffer between
the reinforcement learning and demonstrator data. In [14], the
authors address the problem of sample efficiency improvement
by using pretraining and state dynamics prediction. However,
the proposed idea of pretraining is different from the one
proposed here as the random positions and actions are used.
Also, in contrast to the proposed method, which uses image
input, the approach, proposed in [14], has only been tested on

Annotated Dataset Supervised Pre-training Initial Model

Reinforcement&Supervised Learning

Environment

Rewards Control Signals

Finetuned Model

Fig. 1: The overall scheme of the proposed method

low-dimensional problems.
The novelty of the approach, presented in this paper, is given

as follows:
1) a new regularised formulation optimisation, combining

reinforcement and supervised learning, is proposed;
2) a training algorithm is formulated based on this problem

statement, and assessed on control problems;
3) the novel greedy actor-critic reinforcement learning al-

gorithm is proposed as a part of the training algorithm,
containing interlaced data collection, critic and actor
update stages.

The proposed method reduces the number of samples from
millions or tens of millions, required to train the reinforcement
learning model on visual data, to just hundreds of thousands,
and is shown to converge to policies outperforming the ones
achieved by both supervised and reinforcement learning ap-
proaches. This approach helps to build upon the performance
of supervised learning by using reinforcement learning, which
both provides the ability to learn faster than reinforcement
learning and at the same time to improve policy using rewards,
which is not possible when using just supervised training
algorithms.

II. PROPOSED METHOD

The overall idea of the method is shown in Fig. 1 and can
be described as follows: to perform an initial approximation
by supervised learning and then, using both explicit labels and
rewards, to fine-tune it.

For supervised pre-training, the annotated dataset should
contain recorded examples of control by some existing model.
The aim of this stage is to mimic the existing control methods
in order to avoid control behaviour of the trained model
resulting in small rewards.

For supervised and reinforcement learning based fine-
tuning, a pretrained model is used as an initial approximation.
Contrary to the standard reinforcement learning approaches,
the pre-trained model helps it to avoid control values resulting
in small rewards right from the beginning. Also, for the control
it is assumed that there is access to labels, which helps to divert
the reinforcement learning model from spending its time on
exploring those combinations of inputs and control signals,
which are most likely not to provide meaningful solutions.

A. Supervised pretraining

Hereinafter, we consider the following problem statement
for supervised pretraining. Let Z be the space of all possi-

ble input signals. To simplify the formalisation, we restrict
ourselves to the image signals z ∈ Z = Rm×n, where
m and n are the height and the width of the image, re-
spectively. Such signals can form sequences of finite length
l > 0 : 〈z1, z2, . . . , zl〉 ∈ Zl. We define an operator from
the subsequences of real valued quantities to d-dimensional
control signals π(zi, zi−1, . . . , zi−p+1|Θπ) : Zp → Rd,
where i ∈ [p, l], p ∈ N is the number of frames used to
produce the control signal, and Θπ are the parameters of
the operator π(·). We denote ci = π(zi, . . . , zi−p+1|Θπ),
xi = (zi, zi−1, . . . , zi−p+1).

The problem is stated as follows: given the set of N

sequences
{
ẑj ∈ Zlj

}N
j=1

and the set of corresponding signal

sequences
{〈

ĉji ∈ Rd
〉lj
i=1

}N
j=1

, produced by some external

control method called a ’reference actor’, find the parameters
Θπ of the actor π(·|Θπ), which minimise a loss function (the
used loss function is defined in Formula (7)).

B. Label-assisted reinforcement learning

The reinforcement learning method is inspired by the DDPG
algorithm [3], however, it is substantially reworked in order to
meet the needs of the proposed combination of supervised and
reinforcement learning working in real time. First, the problem
statement and basic definitions, necessary for formalisation of
the method, need to be given.

In line with the standard terminology for reinforcement
learning, we refer to a model, generating control signals, as
an agent, and to control signals as actions. Also, as it is
usually done for reinforcement learning problem statements,
we assume the states to be equivalent to the observations.
Initially, the model receives an initial state of the environment
x1. Then it applies the action c1, which results in transition
into the state x2. The procedure repeats recurrently, resulting
in sequences of states Xn = 〈x1, x2, . . . , xn〉 and actions
Cn = 〈c1, c2, . . . , cn〉. Every time the agents performs an
action it receives a reward r(xi, ci) ∈ R [3].

The emitted actions are defined by the policy π, mapping
states into actions. In general [15], it can be stochastic,
defining a probability distribution over the action space, how-
ever here the deterministic policy is assumed. For such a
deterministic policy, one can express the discounted future
reward using the following form of the Bellman equation for
the expectation of discounted future reward Q(·, ·) [3]:

Q(xi, ci) = Exi+1
[r(xi, ci) + γQ(xi+1, π(xi+1))] , (1)

where π(·) is an operator from states to actions, γ ∈ [0, 1] is
a discount factor.
Q(·, ·) is approximated by the critic neural network in line

with the actor-critic approach. Similarly to [3], the proposed
method uses a replay buffer to provide a training set.

In many of the state-of-the-art works on reinforcement
learning, the actor’s parameters are trained by maximisation

of the critic’s approximation of Q(·, ·) , using gradient descent
with gradients, obtained using the chain rule ([3], [15]):

∇Θππ(x|Θπ) ≈ Eπ[∇π(x)Q(x, π(x)|ΘQ)∇Θππ(x|Θπ)],
(2)

where ΘQ and Θπ are the trainable parameters of the actor and
the critic, respectively. In [3], [15], the greedy optimisation
algorithm is not used as it might be impossible to collect
diverse training sample for the critic as the actor would not be
able to advance through the task. Instead, small steps in the
gradient direction are applied to slightly modify the policy.

In the proposed method, contrary to many state-of-the-art
methods, the optimisation is carried out in a greedy way, so
that the steps of testing the current policy, updating the critic
and the actor are interlaced. This is done in order to meet
the requirements of real world scenarios, namely minimising
the difference between the measurements per second rate in
testing and training scenarios and providing the reasonable
performance of the actor after the smallest possible number of
epochs. In order to avoid deterioration of performance in the
pretrained model (which would essentially lead to the number
of steps comparable with the state-of-the-art reinforcement
learning models), the regularisation is used to bring the
parameters closer towards some pre-defined (reference) policy.

In the following derivations we use a restriction that
Q(·, ·) ≥ 0, which, as one can easily see from Equation
(1), will be true if the rewards are non-negative. We also
assume (without loss of generality of further derivations) that
the control signal is bounded between values (t1, t2), and t1
and t2 are not included into the appropriate operational values,
in order to augment the training sample for the critic with the
values Q(x, t1) = Q(x, t2) = 0 for every value x.

The optimisation problem is based on the regularised Q-
function f(x, π(x|Θπ)) :

F (Θπ) =
∑
x∈X

f(x, π(x|Θπ))→ max
Θπ

, (3)

f(x, π(x|Θπ)) =

= Q(x, π(x|Θπ))− αQ(x, π̂(x))ρ(π(x|Θπ), π̂(x)),

(4)

where α ≥ 0 is some coefficient, π̂(·) is the reference actor,
and ρ(·, ·) is a differentiable distance-like function. One can
easily see that in the case α = 0 it completely coincides
with the reinforcement problem, and with large α values the
problem becomes a standard supervised training one. The
weight Q(x, π̂(x)) is given to encourage the actor to follow
the reference policy if the expected reward is high, and not
to encourage much otherwise. Such type of penalisation gives
the opportunity to establish a balance between the supervised
approach, using only reference actor values, and reinforcement
learning approach, which could help finding better policies
comparing to the supervised approach and, in some cases, to
the reference actor.

After differentiating this expression with respect to Θπ one
can see that

∇F (Θπ) =
∑
x∈X
∇Θππ(x|Θπ)×

×
{
∇πQ(x, π(x|Θπ))− αQ(x, π̂(x))

∂ρ(π(x|Θπ), π̂(x))

∂π

}
.

(5)

As in [3], the update of the critic is carried out by solving
the following optimisation problem:∑

(xi,ci)∈(X̂,Ĉ)

[
Q̂π(xi, ci|ΘQ)− r(xi, ci)−

−γQ̂π(xi+1, π(xi+1|Θπ)|ΘQ)
]2
→ min

ΘQ
,

(6)

where X̂ and Ĉ are taken from the replay buffer, Q̂π is the
discounted reward function approximation. This equation is
recurrent, and therefore the current target for training depends
on previous training stages.

The training procedure is carried out in the way described
in Algorithm 1. In this algorithm, NUM EPOCHS denotes the
maximum number of epochs during the training procedure.

Algorithm 1 The description of the training algorithm

Initialise and train the parameters Θπ for the actor π(x|Θπ)
on a supervised dataset with observations and labels
{XS , CS}
Initialise the parameters of the critic ΘQ, k = 1
Initialise the empty replay buffer B
while k ≤ NUM EPOCHS do

Perform N TESTING EPISODES testing episodes of
the length L TESTING EPISODES with the current
parameters Θπ , where the states xi, actions ci, reference
actor actions cGTi , rewards ri = r(xi, ci) and subsequent
states xi+1 are collected and put into the replay buffer
B
Perform N GD UPDATE CRITIC iterations of gradi-
ent descent, according to the optimisation problem (6),
in order to update the parameters of the critic ΘQ; values
xi, xi+1, ci, ri are taken from the replay buffer B
Perform N GD UPDATE ACTOR iterations of gradi-
ent descent for the optimisation problem (3) in order
to update the parameters of the actor Θπ; values xi,
cGTi = π̂(xi) are taken from the replay buffer B
k = k + 1

end while

As one can see from the algorithm, the 0-th epoch’s testing
episodes reflect the performance of the model with supervised
pretraining only. This was done to assess the performance of
the same model parameterisation during the epoch, as well as
to exclude the problem when the control signal frequency (and
hence performance) is affected by the optimisation time.

III. RESULTS

To demonstrate the ability of the method to learn control
signals, the TORCS [16] / SpeedDreams [17] driving simulator

TABLE I: Parameters of the network

Parameter Name in Algorithm 1 Value
Critic Training Steps/ Epoch N GD UPDATE CRITIC 12500
Actor Training Steps/ Epoch N GD UPDATE ACTOR 12500
Testing episode length L TESTING EPISODES 3000
Testing episodes per epoch N TESTING EPISODES 5
Actor learning rate 1 · 10−4

Critic learning rate 1 · 10−5

Supervised learning rate 1 · 10−4

Supervised momentum 0.9
Soft update coefficient 0.1
Discount factor γ See Equation 1 0.9
Actor FC1 size See Fig. 2 2002
Actor FC2 size See Fig. 2 2002
Actor FC3 size See Fig. 2 1
Critic FC1 size See Fig. 2 2005
Critic FC2 size See Fig. 2 2005
Critic FC3 size See Fig. 2 1

was used. In our experiments, the Simplix bot performed
roles of both the baseline and the reference actor, which is
a part of the standard package, was used. The outputs of
the bot’s steering angles were restricted between −0.25 and
0.25. The car name was Lynx 220. In the cases where car
got stuck (average speed is less than one unit as measured
by the simulator), the recovery procedure is provided by the
bot. The time and rewards for the recovery are excluded from
consideration. The reward is defined as the current car speed
measured by the simulator. The assessment has been carried
out on a single computer, using NVIDIA GeForce GTX 980
Ti graphical processor on Ubuntu Linux operating system. The
model parameters are described in section III-A.

Another aspect to be considered is how the proposed
approach would work for other well-known control scenarios.
Section III-D discusses the performance of the method for
MuJoCo environments [18] using OpenAI Baselines package
[19].

A. Parameterisation of the model

The parametrisation for the experiments is given in Table
I; the parameters’ verbal description is augmented with the
names referring to Algorithm 1.

For supervised only pretraining of the actor network, the
Momentum algorithm is used [20]; for the rest of the stages,
the Adam algorithm is used [21]. The proposed algorithm has
been implemented in Python using TensorFlow framework
[22]. For the stage of supervised pretraining, in order to
improve convergence of the model at the initial stage, the ad-
ditional soft update coefficient was introduced for exponential
smoothing of the parameters of the network during gradient
descent optimisation. In all the experiments, pretraining data
contained up to a few thousand of states and served only to
provide the agent some initial policies conforming with the
behaviour of the reference actor.

B. Network architecture

The network architecture, used for the proposed actor-critic
approach, is shown in Fig. 2. For supervised pretraining, the

Image(i-1)

Features(i-1)

Feature Extractor

Image(i)

Features(i)

Feature Extractor

FC1

FC2

FC3

Control Signal(i)

Features(i-1)

FC1

Features(i) Control Signal(i-1) Control Signal(i)

FC2

FC3

Q_Function

Fig. 2: The scheme of the actor (left) and critic (right)
networks

dataset has been collected from the SpeedDreams simulator,
combining the sequences of images and the corresponding
control values produced by the bot. Using this dataset, the In-
ceptionV1 network [23] is first fine-tuned from the Tensorflow
Slim implementation [24] on the collected dataset, mapping
each single image directly into the control signals. The last
(classification) layer of the network is replaced by a fully
connected layer of the same size (1001) as the preceding logits
layer; this layer is referred to as a feature extraction layer as
it serves as an input space for the actor-critic model. Such an
approach is used in order to avoid expensive storage of images
in the replay buffer, as well as circumvent the challenge of
training deep architectures within the reinforcement learning
setting. For two input images, the extracted features are
concatenated into the fully connected layer FC1, followed by
(also fully connected) layers FC2 and FC3. Each of the actor
and critic layers except the last, FC3, contains ReLU non-
linearity [25]. The actor’s last layer, responsible for control
signals production, with dimensionality d of the control signal
is followed by the tanh non-linearity, which restricts the
output between the boundary values (t1, t2) = (−1, 1); the
last layer of the critic has no non-linearity.

For supervised fine-tuning and pretraining stages, we use
the following loss function:

l(X,C) =
∑

x∈X,c∈C

|π(x)− c|
|c|+ ε

, (7)

where ε is a reasonably small constant (with respect to c,
we use ε = 10−2), π(x) is an operator, transforming input
vectors x to the control signals, c is the reference actor control
signal. This loss is chosen in order to prevent the model from
overfitting to larger reference actor control signals.

Similarly, the distance-like function ρ in Formula (4) is
defined as:

ρ(π, π̂) =
(π − π̂)T (π − π̂)

|π̂|2 + ε
, (8)

where ε is a reasonably small constant (we use ε = 10−4).
To implement the formalisation, described in section II-A,

we use a siamese network architecture (see [26]), given in
Fig. 2. The features, calculated by the fine-tuned network,
are submitted for the current and the previous frame (p = 2
in terminology of section II-A). It is done in order to take

TABLE II: Simplix bot rewards

Episode 1 Episode 2 Episode 3 Episode 4 Episode 5 Average
81315 81779 79481 81564 81931 81214

TABLE III: Maximum sum-of-rewards values for different
parameters α (for α = 0 these values are obtained during
supervised pretraining)

α maxR
100%×

× maxR
maxRbot

Epoch maxR
100%×
×max

R

Rbot

Epoch

100 75512 92.16 9 72180 88.88 10
0.25 75896 92.63 17 73339 90.30 14
0.1 75867 92.60 32 73381 90.35 15
0.05 75379 91.97 27 71670 88.25 23
0.01 67766 82.71 20 65806 81.03 20
0 62725 76.56 1 58469 71.99 1

into account the dynamic state of the environment, including
speed. Also we need to mention that the previous control
signal is submitted as an input for the critic (for the initial
video frame in each sequence, we assume that the frames and
control signals are the same for the current and the previous
frames).

C. Experiments

Table III and Fig. 3 record rewards achieved for different
values of the parameter α. When α = 0, we rely solely on
reinforcement learning; high values of α enforce a stronger
bias towards supervised labels rather than improving the policy
by reinforcement learning.

In Fig. 3, the scatter points depict total rewards during each
of the testing episodes, and the curves show mean total rewards
for each epoch over all testing episode rewards. The total
reward is calculated as an arithmetic sum of the rewards during
one training episode. The left figure shows the results for all
tested parameters, while the right one shows the comparison
between the best performing one and the one with the largest
value of α (i.e. the closest to supervised active learning). The
performance of the pretrained model corresponds to the first
epoch in the graph. The shaded area in the right figure shows
the standard deviation of the testing episodes performance
during the epoch. One can see from the figure that smaller
values of the coefficient α tend to yield worse performance;
however, it may be attributed to longer convergence time as it
implies more reliance on reinforcement learning exploration.
At the same time, unlimited increase of the coefficient α
does not help gaining further performance improvements. Even
more, one can see from the right figure that after certain point
the curve for α = 100 slowly declines; we suggest that it
could be caused by overfitting to the bot values. We also see
that for α = 0, when the supervised data is used only during
the pre-training stage, the performance is much lower than for
the rest of the graphs.

Table III shows the total rewards for different values of
parameter α. The value maxR shows the maximum total

reward over one testing episode during all the training time
(corresponds to the highest scatter point in Fig. 3 for a given
parameter α), the value maxR shows the maximum mean total
reward, where the mean is calculated for each epoch over all
testing episode total rewards (corresponds to the highest point
of the curve in Fig. 3 for a given parameter α).

In order to compare the rewards shown in these graphs
and tables, we have also measured them the Simplix bot in
the same conditions (frame per second rate) as the proposed
algorithm. The total rewards for the Simplix bot, available
in the SpeedDreams/TORCS simulator, are given in Table II.
The mean value of these rewards is Rbot = 81214.07. The
maximum value achieved by the bot is maxRbot = 81931.15.
The percentage of the proposed algorithm’s rewards with
respect to the bot one, in average and for the best performance,
is also given in Table III.

One of the notable things is the dramatic decrease in the
number of samples: from millions [3] or tens of millions [1]
measurements for standard reinforcement learning techniques
[3] to just hundreds of thousands (15000 per training epoch,
several tens of training epochs). For some of the reinforce-
ment learning algorithms, trained on a problem of driving
in a simulator, only some realisations were able to finish
the task [3], and for those methods, which report solving
similar problems by reinforcement learning only, the reported
performance constitutes 75 − 90% [4], while we achieve up
to 92.63% of the bot’s performance as reported in Table III.
The graphs in Fig. 4 and 5 illustrate the difference between
the unregularised Q-function Q(x, π(x)) and its regularised
counterpart f(x, π(x)) (see Equation 4). The images on the
top of the figures, recorded during the testing episode of the
first epoch (directly after the supervised pretraining), have
been used for computation of the Q-values. The graphs below
these images show the evolution of the Q-function (and its
regularised version f) across the epochs. One can see that,
as expected, the regularised Q-function is steeper than the
unregularised one as it penalises the values which are too far
away from the reference actor control signal. The difference
between Fig. 4 and 5 shows the importance of the factor
Q(x, π̂(x)) in Equation 4: the penalty for not following the
control signal is less, if the expected reward is smaller. It
makes the algorithm explore values further from the bot’s
values, if it does not provide high expected reward.

D. Experiments with regularised DDPG on MuJoCo environ-
ments

The experiments with MuJoCo environment [18] demon-
strate applicability of the proposed idea of regularising Q-
values with supervised learning to other well known control
problems, while showing that in certain cases the approach
can outperform the original reference actor. For this purpose,
we have added the proposed Q-function regularisation to the
standard DDPG algorithm with the implementation, network
architecture and parameters, taken from OpenAI Baselines
[19]. L2 distance has been used as ρ for the equation (4).
Also, in order to maintain the correctness of regularisation

Fig. 3: Sum-of-rewards for different parameters α

Fig. 4: Regularised and non-regularised Q-function values, high reward, α = 0.25; the epochs’ indices are shown on the right
axis, and the values of π(·) are shown on the left axis

Fig. 5: Regularised and non-regularised Q-function values, low reward, α = 0.25; the epochs’ indices are shown on the right
axis, and the values of π(·) are shown on the left axis

assumptions, as the condition Q ≥ 0 is not met for some
low reward values in MuJoCo, Q(x, π̂(x)) was substituted
by max(0, Q(x, π̂(x)). The reference actors were obtained by
pretraining actors by standard DDPG algorithm.

The results of these experiments are given in Fig. 6. In every
graph, the black lines show the performance of the pretrained
reference actor. These experiments are aimed to compare the
following three cases:

1) the original DDPG algorithm (referenced as α = 0)
2) the DDPG algorithm with fixed regularisation coeffi-

cient, α = 0.1
3) the DDPG algorithm with exponential decay, initial

value of α is 1, the value is decayed with the coefficient
0.01 every 20, 000 timesteps.

For the HalfCheetah scenario, one can see that the model
with the fixed regularisation coefficient can easily reach the
pretrained value but then lags behind the algorithm with ex-
ponential decay. The exponential decay algorithm, in contrary,
takes advantage of the reference actor performance and then
gradual decay of the regularisation enables it to explore values
further from the reference actor. These results could suggest
that in certain cases the regularisation can prevent the model
of further exploration beyond the reference actor performance.

For the Hopper scenario, the peak in the performance of

original DDPG algorithm beyond the reference actor baseline
near step 270, 000 suggests that the original DDPG algorithm
may be unstable for this task, which also holds for DDPG with
exponential decay as the regularisation coefficient becomes
negligibly small. At the same time one can see that the model
with the fixed regularisation coefficient can reach performance
beyond the reference actor.

It could be concluded from the graphs for the InvertedDou-
blePendulum task that convergence depends in this case on the
initial value of parameter α. The larger initial value for the
DDPG with exponential decay appears to give better results
due to heavier reliance on the supervised part. Importantly, all
versions of the method are able to maintain stable performance
after the initial training episode.

For the Swimmer scenario, the exponential α setting al-
lowed to go for some period of time beyond the reference
actor baseline; at the same time, the version with α = 0.1,
while not beating the reference actor, shows smaller variance
than the original algorithm, and most of the time exposes better
average performance than the original DDPG method.

(a) HalfCheetah

(b) Hopper

(c) InvertedDoublePendulum

(d) Swimmer

Fig. 6: Results in MuJoCo environments, top to bottom:
HalfCheetah, Hopper, InvertedDoublePendulum, Swimmer.
The average reference actor performance is shown by black
horizontal bar, α = 0 corresponds to the original DDPG
algorithm

IV. CONCLUSION

The proposed method shows dramatic improvement in the
number of samples for video data (down to just several
hundred thousand) comparing to the reinforcement learning
methods, as well as improves the performance on simulated
robotic tasks comparing to both supervised and reinforce-
ment learning. We believe that such approach, combining
reinforcement and supervised learning, could help to succeed
in the areas of complex spaces where the state-of-the-art
reinforcement learning methods are not working yet, as well
as towards practical usage for real world models such as
autonomous cars or robots.

However, there are still a few limitations of the proposed
method. First, it still requires label data through all the course
of training. We believe that in the future work it should be
possible to reduce usage of training data to a limited number
of labelled episodes. Such decrease of the training data could
benefit to the range of practical tasks solvable by the proposed
approach.

V. ACKNOWLEDGEMENT

The authors are grateful for the support by the UK Engineer-
ing and Physical Sciences Research Council (EPSRC) project
DEVA EP/N035399/1.

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013.

[2] J. Kober and J. Peters, “Reinforcement learning in robotics: A survey.”
Reinforcement Learning, Springer Berlin Heidelberg, pp. 579–610,
2012.

[3] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[4] V. Mnih, A. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” International Conference on Machine Learning,
pp. 1928–1937, 2016.

[5] M. T. Rosenstein, A. G. Barto, J. Si, A. Barto, W. Powell, and
D. Wunsch, “Supervised actor-critic reinforcement learning,” Handbook
of Learning and Approximate Dynamic Programming, pp. 359–380,
2004.

[6] T. Welschehold, C. Dornhege, and W. Burgard, “Learning manipulation
actions from human demonstrations,” in Intelligent Robots and Systems
(IROS), 2016 IEEE/RSJ International Conference on. IEEE, 2016, pp.
3772–3777.

[7] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning.”
AAAI, pp. 4278–4284, 2017.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in Neural Informa-
tion Processing Systems, pp. 1097–1105, 2012.

[9] K. Li and R. Wen, “Robust control of a walking robot system and
controller design.” Procedia Engineering, vol. 174, pp. 947–955, 2017.

[10] N. Esmaeili, A. Alfi, and H. Khosravi, “Balancing and trajectory tracking
of two-wheeled mobile robot using backstepping sliding mode control:
Design and experiments,” Journal of Intelligent & Robotic Systems, pp.
1–13, 2017.

[11] N. Heess, S. Sriram, J. Lemmon, J. Merel, G. Wayne, Y. Tassa,
T. Erez, Z. Wang, A. Eslami, M. Riedmiller, and D. Silver, “Emer-
gence of locomotion behaviours in rich environments,” arXiv preprint
arXiv:1707.02286., 2017.

[12] N. Heess, J. J. Hunt, T. P. Lillicrap, and D. Silver, “Memory-based con-
trol with recurrent neural networks,” arXiv preprint arXiv:1512.04455,
2015.

[13] M. Večerı́k, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot, N. Heess,
T. Rothörl, T. Lampe, and M. Riedmiller, “Leveraging demonstrations
for deep reinforcement learning on robotics problems with sparse
rewards,” arXiv preprint arXiv:1707.08817, 2017.

[14] C. W. Anderson, M. Lee, and D. L. Elliott, “Faster reinforcement
learning after pretraining deep networks to predict state dynamics,”
in Neural Networks (IJCNN), 2015 International Joint Conference on.
IEEE, 2015, pp. 1–7.

[15] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic policy gradient algorithms,” Proceedings of the 31st
International Conference on Machine Learning (ICML-14), pp. 387–
395, 2014.

[16] E. Espi, C. Guionneau, and B. W. et al., “Torcs, the open racing car
simulator,” http://torcs.sourceforge.net, accessed in January 2018.

[17] SpeedDreams, “an open motorsport sim,” http://www.speed-dreams.org,
accessed in January 2018.

[18] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-
based control,” in Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ
International Conference on. IEEE, 2012, pp. 5026–5033.

[19] P. Dhariwal, C. Hesse, M. Plappert, A. Radford, J. Schulman, S. Sidor,
and Y. Wu, “Openai baselines,” https://github.com/openai/baselines,
2017.

[20] N. Qian, “On the momentum term in gradient descent learning algo-
rithms,” Neural Networks : The Official Journal of the International
Neural Network Society, vol. 12(1), p. 145151, 1999.

[21] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[22] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin et al., “Tensorflow: Large-scale
machine learning on heterogeneous distributed systems,” arXiv preprint
arXiv:1603.04467, 2016.

[23] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
E. Dumitru, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 1–9, 2015.

[24] N. Silberman and S. Guadarrama, “Tf-slim: A high
level library to define complex models in tensorflow,”
https://research.googleblog.com/2016/08/tf-slim-high-level-library-
to-define.html, 2016, accessed in January 2018.

[25] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltz-
mann machines,” in Proceedings of the 27th international conference on
machine learning (ICML-10), 2010, pp. 807–814.

[26] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H. Torr,
“Fully-convolutional siamese networks for object tracking,” European
Conference on Computer Vision, Springer International Publishing,
vol. 18, pp. 850–865, 2016, October.

